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SAMPLING GAUSSIAN DISTRIBUTIONS IN KRYLOV SPACES
WITH CONJUGATE GRADIENTS∗

ALBERT PARKER† AND COLIN FOX‡

Abstract. This paper introduces a conjugate gradient sampler that is a simple extension of the
method of conjugate gradients (CG) for solving linear systems. The CG sampler iteratively generates
samples from a Gaussian probability density, using either a symmetric positive definite covariance
or precision matrix, whichever is more convenient to model. Similar to how the Lanczos method
solves an eigenvalue problem, the CG sampler approximates the covariance or precision matrix in a
small dimensional Krylov space. As with any iterative method, the CG sampler is efficient for high
dimensional problems where forming the covariance or precision matrix is impractical, but operating
by the matrix is feasible. In exact arithmetic, the sampler generates Gaussian samples with a realized
covariance that converges to the covariance of interest. In finite precision, the sampler produces a
Gaussian sample with a realized covariance that is the best approximation to the desired covariance
in the smaller dimensional Krylov space. In this paper, an analysis of the sampler is given, and we
give examples showing the usefulness and limitations of the Krylov approximations.
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1. Introduction. Gaussian distributions are common throughout statistical mod-
eling, being convenient from both computational and theoretical viewpoints. Not un-
commonly the Gaussian model is defined on a state space with dimension 106 to 109

or more, in which case direct sampling algorithms that Cholesky factor the covariance
matrix Σ can be very slow or infeasible. For example, high dimensional Gaussians
are used in models of global total column ozone [13], tropical ocean surface winds
[54], and the structure of the Earth’s mantel and outer core [51]. High dimensional
Gaussians also occur in exploratory analyses in inverse problems, for example, when
the state corresponds to parameter values in a finite element discretization of a three-
dimensional region. When working with Gaussian Markov random fields (GMRFs)
[22, 38], the precision matrix Σ−1 is modeled. One advantage of this latter approach is
that Σ−1 is sparse if the neighborhoods specifying conditional independence are small.
Conventionally, efficient samplers must exploit the sparseness of either the covariance
matrix Σ or the precision matrix Σ−1 within a Cholesky factorization to allow effi-
cient sampling from the full Gaussian [37, 38], or use a circulant matrix structure that
allows Fourier methods to be used [18].

The Cholesky factorization is also the preferred method for solving moderately
sized linear systems when the coefficient matrix is symmetric and positive definite.
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For large linear systems, iterative solvers are the methods of choice due to their
inexpensive cost per iteration and small computer memory requirements. For large
dimensional Gaussians, iterative Gibbs sampling is one of the few general sampling
methods available, often viewed as a reduction of the Metropolis–Hastings algorithm
that takes advantage of the availability of conditional distributions. Perhaps less well
known is that Gibbs samplers are essentially identical to stationary iterative methods
[1, 2, 15, 21, 36] that were used as linear solvers in the 1950s and are now considered
very slow due to their geometric rates of convergence.

An iterative Gaussian sampler with faster than geometric convergence was pro-
posed by Schneider and Willsky in [44]. Just as the method of conjugate gradients
(CG) determines search directions to the solution of Ax = b in an optimal way rather
than iterating through coordinate directions as does the stationary solver Gauss–
Seidel, the sampler proposed by [44] uses conjugate directions to produce a sample,
rather than the sequence of coordinate directions used by a Gibbs sampler which
results in only geometric convergence [36].

In this paper, we expand upon the conjugate direction sampler of N(0, A) pro-
posed in [44], which was derived from the Lanczos algorithm for determining eigende-
compositions and uses a stopping criterion based on matrix traces. We present a CG
sampler, a simple extension of the CG linear solver, that, in addition to producing
approximate samples from N(0, A), also produces samples from N(0, A−1) at no ad-
ditional cost. This is relevant when modeling a GMRF, where A := Σ−1 is a precision
matrix model. This approach has the natural stopping criterion of terminating when
CG finds a solution to Ax = b, that is, when the CG residual is equal to zero.

In exact arithmetic, CG is guaranteed to find a solution to the linear system
Ax = b after a finite number of iterations, and the Lanczos algorithm, for which CG
is a special case [20, 26], finds all of the eigenpairs of A (when the eigenvalues of A
are distinct). In finite precision, the search directions used by CG lose conjugacy.
Nevertheless, CG still finds a solution to Ax = b as long as “local conjugacy” of the
search directions is maintained [26]. In fact, when the spectrum of A is clustered
into k groups, CG finds the approximate solution after k iterations in a k-dimensional
Krylov space. On the other hand, the loss of conjugacy of the search directions
(which corresponds to loss of orthogonality of a Krylov basis) is detrimental to the
Lanczos algorithm, so that only a few of the eigenvalues of A are estimated (the
estimates are called Ritz values), the well-separated and extreme ones [26, 32, 40,
47]. The associated eigenvector estimates (Ritz vectors) are contained in the same
k-dimensional Krylov space searched by CG.

The analysis in this paper shows that the CG sampler behaves like a Lanczos
eigensolver in finite precision. Without corrective measures, loss of conjugacy pro-
hibits sampling from the full Gaussian of interest, N(0, A). The resulting sample has
a realized covariance which is the best k-rank approximation to A (with respect to
the 2-norm) in the k-dimensional Krylov space searched by the CG linear solver, and
has Ritz pairs as eigenpairs. This result is different from that presented in [44], since,
by driving the CG residual to zero, the CG sampler is guaranteed to converge to an
invariant subspace of A. The CG sampler also produces approximate samples from
N(0, A−1), which have a realized covariance that is the best k-rank approximation
to A−1 in the same Krylov space, and has reciprocal Ritz values and Ritz vectors as
eigenpairs.

Similar to the difficulty faced by iterative eigenproblem solvers, the accuracy of
the Krylov k-rank approximations of A and A−1 depends on the distribution of the
eigenvalues of A. The accuracy of the covariance approximation of A can be quantified
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by the fraction of mean-squared error reduction calculated via a ratio of matrix traces
as the authors do in [44]. To determine how accurate the covariance approximation
to A−1 is, we provide a similar inexpensive check using a CG implementation of the
Monte Carlo Lanczos scheme outlined in [5].

CG has the remarkable property of solving Ax = b in a finite number of steps
while requiring storage of only two vectors and the ability to operate by the matrix
A. In exact arithmetic, the CG sampler has the analogous property of producing
samples from the Gaussians N(0, A) and N(0, A−1) in a finite number of steps while
requiring storage of a single state vector in addition to those required by CG. Within
the sampler one needs to operate by the matrix A, but there is no need to store
the matrix or factorize it. Hence the sampler is useful in high dimensional problems
where forming A is impractical or inconvenient, and it gives computational efficiency
in those problems where operation by A can be performed much more cheaply than
by direct matrix multiplication.

In finite precision, however, to attain a specified level of accuracy of a covariance
approximation, one must correct for the loss of conjugacy of the search directions at
the expense of more computational time and/or increased memory requirements. This
is the same conundrum faced by any Lanczos method as the number of eigenpairs
of A that one wishes to estimate increases. The sampler proposed by Schneider
and Willsky [43, 44] uses reorthogonalization schemes [20, 32], commonly used with
Lanczos processes. Other approaches such as spectral transformations [16, 27, 48, 56],
block Lanczos methods [4, 6, 20, 28, 32, 56]), and restarting and look-ahead schemes
[4, 48] have also been used successfully with Lanczos methods. For high dimensional
problems, these schemes can be as expensive as a Cholesky factorization (depending
on the distribution of the eigenvalues) and hence are infeasible.

When drawing samples from large-scale Gaussians, other corrective measures need
to be investigated. One obvious way to generate a sample with a realized covariance
arbitrarily close to A or A−1, while storing only vectors (instead of a matrix as large
as A), is to use a Gibbs sampler, accelerated by initialization with a CG sample.
Unfortunately, the geometric convergence of the Gibbs sampler is reduced by only
a constant factor in this case. A more appealing approach is suggested by the re-
sult in this paper that the realized covariance of the CG samples is equal to the
CG polynomial described in [3, 30, 31]. Thus, the same polynomial filters used to
accelerate linear solvers [19, 31, 39, 41, 48] can potentially be used to inexpensively
aid conjugate direction samplers by damping out the eigenspaces that have already
been sampled. The key difference between Lanczos eigensolvers and Krylov samplers
is that samplers need not explicitly estimate eigenpairs in order to sample from the
corresponding eigenspaces. This is an area of current research.

The rest of the paper is organized as follows. In section 2 we present the CG
sampler, determine the distribution of the samples, and give some necessary back-
ground of the Lanczos algorithm. Section 3 is the central part of the paper. We make
clear the relationship between CG sampling and Lanczos and show that the realized
covariance matrices of the CG samples after k iterations are accurate in the associ-
ated Krylov spaces. We also provide inexpensive checks, based on matrix traces, to
provide some measure of the accuracy of the realized covariances. Last, we consider
CG sampling from a Gaussian with a symmetric positive semidefinite covariance or
precision matrix with a nontrivial nullspace. In section 4 we present some numerical
examples from commonly used Gaussian models which demonstrate how the sampler
behaves in finite precision, and we compare the results to those from Cholesky and
Gibbs samplers.
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2. Mathematical preliminaries.

2.1. Sampling with conjugate gradients. An n-dimensional Gaussian with
zero mean is defined by its n × n symmetric and positive definite covariance matrix
Σ. We denote the distribution by N(0,Σ). Throughout what follows, we allow that
either A := Σ (in which case N(0, A) is of interest), or A := Σ−1 (in which case
N(0, A−1) is of interest).

The conventional way to sample from a Gaussian with a given covariance matrix
A is to determine the Cholesky factorization A = CCT , so that if z ∼ N(0, I),
then c = Cz ∼ N(0, A). If A is a precision matrix, then solving CT y = z gives
y = C−T z ∼ N(0, A−1) [37, 38]. The Cholesky factorization is the method of choice
since it is fast, incurring approximately 1/3n3 floating point operations (flops) [20, p.
144], [53, p. 40], and is backwards stable [53]. If A has bandwidth b, calculation of
the Cholesky factorization requires O(b2n) flops, which is a substantial savings when
b � n/2 [20, 37, 53].

In addition to the Cholesky factorization, other linear solvers have been used to
sample from Gaussian distributions. The correspondence between linear solvers and
Gaussian samplers is due to the fact that a linear solve of Ax = b is the same as
minimizing the quadratic

φ(x) =
1

2
xTAx − bTx,

and exp(−φ) is proportional to the Gaussian density N(A−1b, A−1). For example, this
relationship is used to show the equivalence between Gauss–Seidel, which iteratively
solves a linear system by minimizing φ in (blocks of) coordinate directions, and the
Gibbs sampler, which samples from the Gaussian N(0, A−1) conditional on blocks of
the coordinate random variables [1, 2, 36].

Iterative samplers such as a Gibbs sampler are attractive options when sampling
from high dimensional Gaussians due to their inexpensive cost per iteration (about
2n2 flops) and small computer memory requirements (only vectors of size n need be
stored). If the precision matrix is sparse with O(n) nonzero elements, then, regardless
of the bandwidth, iterative methods cost only about 2n flops per iteration, which is
competitive with sparse Cholesky factorizations (i.e., if each row of A has about
s � n nonzero elements, then the cost of an iteration, dominated by the matrix-
vector multiply, is about 2sn flops). Unfortunately, the current state of the art for
iterative samplers, which is equivalent to symmetric successive overrelaxation (SSOR),
converges only geometrically [36].

An iterative sampler of N(0, A) that is guaranteed to converge in a finite number
of steps (in exact arithmetic) was proposed by Schneider and Willsky in [44]. This
method uses a Lanczos process to produce conjugate directions and then generates
samples along these directions, at a cost of O(n2) flops per iteration.

We propose the following algorithm to produce samples y ∼ N(0, A−1) and c ∼
N(0, A). Instead of using a Lanczos eigensolver to generate conjugate directions, this
sampler uses the CG method to solve the linear system Ax = b.

Algorithm 1 (CG sampler from N(0, A−1)). Given n × 1 vectors b and x0,
and an n × n symmetric positive definite matrix A, let r0 = b − Ax0, p0 = r0,
d0 = p(0)TAp0, y0 = x0, and k := 1. Specify some stopping tolerance ε. Iterate:

1. γk−1 = r(k−1)T rk−1

dk−1
is the one-dimensional minimzer of φ in the direction

xk−1 + γpk−1.
2. xk = xk−1 + γk−1p

k−1.
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3. Sample z ∼ N(0, 1), and set yk = yk−1 + z√
dk−1

pk−1.

4. rk = −∇xφ(x
k) = rk−1 − γk−1Ap

k−1 is the residual.

5. βk = − rkT rk

r(k−1)T rk−1 .

6. pk = rk − βkp
k−1 is the next conjugate search direction.

7. dk = p(k)TApk.
8. Quit if ||rk||2 < ε. Else set k := k + 1 and go to step 1.

Note that implementing only steps 1–2 and 4–8 is the standard CG algorithm
for solving Ax = b. The addition of step 3 which produces the Gaussian sample yk

incurs a negligible additional cost of a vector addition and store at each iteration, so
that the total cost of Algorithm 1 is the same as that of CG, 2n2 flops per iteration.
In section 3.5 we consider implementation of Algorithm 1 when A is symmetric and
positive semidefinite with a nontrivial nullspace.

We will show in section 3.1 that after k iterations, yk has a Gaussian distribution
with a covariance which approximates A−1,

yk ∼̇ N(0, A−1)

(which is accurate as long as the eigenspaces contained by span({pi}) correspond to
the small eigenvalues of A). This suggests that

ck = Ayk ∼̇ N(0, A)

(which is accurate when the eigenspaces contained by span({pi}) correspond to the
large eigenvalues of A). In fact, replacing step 3 in Algorithm 1 with

3. Sample z ∼ N(0, 1), and set ck = ck−1 +
z√
dk−1

Apk−1

is equivalent (in exact arithmetic) to how the samples are generated using a Lanczos
method in [44]. However, instead of step 8, the authors in [44] terminate the conjugate
direction sampler when trace

(
Var(ck)

) ≈ trace(A). This difference in a stopping
criterion assures the optimality of the realized covariances of the CG samples yk and
ck in span({pi}) (see section 3.1).

2.2. Distributions of the CG samples. In order to show that the distribu-
tions of the CG samples yk and ck produced by Algorithm 1 converge to the Gaussians
of interest, we first need to establish some notation. Let Pk be the n× k matrix with
the search directions {pi}k−1

i=0 as columns. The k vectors {pi}k−1
i=0 are A-conjugate

(piTApj = 0 for i �= j), and the residuals {ri}k−1
i=0 , where r

i = b−Axi, are orthogonal.
The span of each of these sets is equal to the Krylov space of dimension k [30],

Kk(A, r0) := span(r0, Ar0, A2r0, . . . , Ak−1r0).

Let P̃k be the n× (n−k) matrix whose columns are the conjugate directions {pi}n−1
i=k .

Then Pn = [Pk P̃k] is invertible, and

Dn :=

(
Dk 0

0 D̃k

)
=

(
PT
k APk 0

0 P̃T
k AP̃k

)
= PT

n APn

is an invertible diagonal matrix, [Dn]ii := piTApi. Thus,

A−1 = PnD
−1
n PT

n = PkD
−1
k PT

k + P̃kD̃
−1
k P̃T

k .
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Now the CG sample yk can be written as yk = y0+PkD
−1/2
k zk, where zk ∼ N (0, Ik).

Thus, when the CG sampler terminates after k < n iterations, the mean and covari-
ance are

E(yk|y0, b) = y0,

Var(yk|y0, b) = Var(PkD
− 1

2

k zk) = PkD
−1
k PT

k .(2.1)

If either y0 or b is random, then the unconditional mean and covariance are [12]

E(yk) = E(E(yk|y0, b)) = E(y0),

Var(yk) = E
(
Var(yk|y0, b))+Var

(
E(yk|y0, b))

= E(PkD
−1
k PT

k ) + Var(y0).(2.2)

Thus, setting y0 to a random vector introduces an additional component to Var(yk).
If the CG sampler is initialized with y0 = x0 = 0, then (since ck = Ayk)

yk|b ∼ N(0, PkD
−1
k PT

k ) and ck|b ∼ N(0, APkD
−1
k PT

k A).

Since the covariance matrix PkD
−1
k PT

k is singular, the conditional distributions of yk

and ck are called intrinsic Gaussians in [38].
In exact arithmetic at iteration k = n, as long as A has n distinct eigenvalues,

the CG sampler produces samples

yn ∼ N(0, A−1) and cn ∼ N(0, A).

When A does not have n distinct eigenvalues, CG terminates at iteration k < n [26].
Just as convergence of Lanczos can be aided by preconditioning to spread out the
eigenvalues of A, (e.g., when A has repeated eigenvalues), one can precondition the
CG sampler by Ã = UTAU for some invertible U so that Ã has distinct eigenvalues.
Now the sampler produces ỹ ∼ N(0, Ã−1) and c̃ = Ãỹ ∼ N(0, Ã) and hence Uỹ ∼
N(0, A−1) and U−T c̃ ∼ N(0, A). As with a preconditioned CG (PCG) linear solver,
a PCG sampler does not require computation of either U or its inverse, but only
requires multiplication of UUT at each iteration [30, 41].

2.3. The Lanczos method for estimating eigenpairs. The behavior of CG
in finite precision has been described by considering CG as a Lanczos process [3, 11,
14, 20, 26]. We will present the Lanczos algorithm in this section, with the goal of
describing the accuracy of the distributions of the CG samples in section 3.

The Lanczos algorithm is an iterative method for estimating the eigenpairs (λi, w
i)

of a given n × n positive definite matrix A [23, 24], and its performance in finite
precision is well studied [26, 32, 40]. At the kth iteration, the Lanczos algorithm is
equivalent to the matrix equation

AVk = VkTk + ηkv
kekT ,(2.3)

where ei is the ith column of the k× k identity Ik, the Lanczos vector vi−1 is the ith
column of the n× k matrix Vk, and the k × k tridiagonal Lanczos matrix is

Tk :=

⎛⎜⎜⎜⎜⎜⎝
α0 η1
η1 α1 η2

. . .
. . .

. . .

ηk−2 αk−2 ηk−1

ηk−1 αk−1

⎞⎟⎟⎟⎟⎟⎠ .
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The eigenvalues of Tk, which we will index by either

θk1 < · · · < θkk or θk−k < · · · < θk−1,

are called Ritz values [11, 26, 32] and are the Lanczos estimates of k of the eigenval-
ues {λi} of A. Letting q1, . . . , qk denote the orthonormal eigenvectors of Tk, the Ritz
vectors {Vkq

i}ki=1 are the Lanczos estimates of the k eigenvectors {wi} of A corre-
sponding to {λi}. Thus, to estimate the eigenvectors of A, Lanczos must either store
the potentially huge n × k matrix Vk or, for each eigenvalue estimate, apply inverse
iteration [4]. The spectral decomposition of Tk can now be written as

Tk = QkΘkQ
T
k ,(2.4)

where Θ = diag(θ1, . . . , θk) and Qk has the eigenvectors qi as columns.
Multiplying (2.3) on the right by the eigenvector qi shows that

||AVkq
i − θki Vkq

i||2 = ηk|qik|,(2.5)

where qik is the last component of qi. This shows that ηk|qik| = 0 signals convergence
of (θki , Vkq

i) to (λi, w
i) [26, p. 9], [32, p. 260]. In particular, ηk = 0 indicates that all

of the Ritz pairs have converged.
By construction, in exact arithmetic, the k Lanczos vectors are an orthonormal

basis for Kk(A, v0) [20, 26]. We already mentioned in section 2.1 that the normal-
ized CG residual vectors r0/||r0||2, . . . , rk−1/||rk−1||2 form an orthonormal basis for
Kk(A, r0) for any k. Thus, if the Lanczos algorithm is initialized with v0 = r0/||r0||2,
then, up to a sign change, the Lanczos vectors are normalized CG residuals, and, in
fact [14, 20, 26],

vk = (−1)k
rk

||rk|| .(2.6)

This is the key relationship between CG and Lanczos that we will exploit. The
consequences which we will use repeatedly are summarized in the next lemma.

Lemma 2.1.

1. A QR factorization of the matrix of conjugate directions Pk is Pk = VkRk,
where Vk is the matrix of orthonormal Lanczos vectors and Rk = V T

k Pk is
upper triangular.

2. T−1
k = RkD

−1
k RT

k and PkD
−1
k PT

k = VkT
−1
k V T

k .
3. The nonzero elements of Tk, {αi} and {ηi}, can be calculated from the CG

parameters {γi} and {βi} by

αi =
1

γi
− βi

γi−1
=

di
||ri||22

− di−1||ri||22
||ri−1||42

, ηi+1 =

√−βi+1

γi
=

di||ri+1||2
||ri||32

,

where 0 ≤ i < k − 1 and the convention β0 = 0 and γ−1 = 1 is used (this
well-known result can be found in [14, 26, 42]).

4. The CG one-dimensional minimizer γk−1 is a function of the eigenpairs
(θki , q

i) of the k × k Lanczos tridiagonal Tk,

k∑
i=1

(qik)
2

θki
= ekTT−1

k ek = γk−1.

Proof. See Appendix A.1.
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Parts 1, 2, and 4 of Lemma 2.1 will allow us to show that the CG covariance
matrices are optimal in the Krylov space Kk(A, r0), and part 3 shows how CG can
be used to construct the k × k Lanczos tridiagonal matrix Tk and then inexpensively
estimate some of the eigenvalues of A.

Remark 2. In exact arithmetic, comparing (2.3) and (2.5) with Lemma 2.1.3
shows that the CG residual rk = 0 corresponds to CG finding a solution to Ax = b at
the same time that the CG sampler finds an invariant subspace of A when all k Ritz
pairs (θki , Vky

i) converge to k of the eigenpairs of A (see also [20, p. 492], [26, p. 50]).
On the other hand, this also shows that some Ritz pairs can converge first (as in one
of the examples presented in section 4).

2.4. Lanczos in finite precision. CG is remarkably robust in finite precision.
In fact, if the eigenvalues of A are in k distinct clusters, then CG tends to find an
approximate solution to Ax = b after only k iterations [30, 47]. As long as “local
conjugacy” is maintained, then, unless A has eigenvalues on the order of machine
precision or has a large condition number, convergence xk → A−1b is guaranteed [26].

For a Lanczos eigensolver in finite precision, when the ith Ritz pair (θki , Vky
i)

converges at iteration k, (2.5) shows that ηk|yik| ≈ 0. Unfortunately,

vkTVky
i ≤ ε||A||

ηk|yik|
(2.7)

is also true [20, 26, 32], where ε is machine precision. Thus, in the face of finite
precision, the newest Lanczos vector vk loses orthogonality with the others when
some Ritz value has converged to an eigenvalue of A, and the unwanted component of
vk is in the direction of the converged Ritz vector Vky

i. Now the CG–Lanczos relation
in (2.6) explains why both CG and the CG sampler experience loss of orthogonality
of the residuals and a corresponding loss of conjugacy in the search directions.

Remark 2 and (2.7) show that loss of conjugacy can happen at the same time that
CG converges, but it can also happen before (as in one of the examples in section 4).
The upside is that, by the time CG converges, some Lanczos eigenpairs have already
converged. It is well known which eigenpairs of A are being estimated.

Remark 3. The eigenvalues of A that are best approximated by the converged
Ritz values {θki } are the extreme ones and the well-separated ones [26, 32, 40, 47].

As iterations continue past convergence of some of the Lanczos Ritz pairs and the
corresponding loss of orthogonality, ghost eigenvalues of Tk appear, which estimate
eigenvalues of A which have already been estimated by earlier Ritz values [14, 20, 50].
That is, Tk has clustered eigenvalues near an isolated eigenvalue of A. Equation (2.7)
partially explains this phenomenon, showing that the newer Ritz vectors leak back
into the eigenspaces spanned by previous Ritz vectors.

3. Accuracy of the CG covariance approximations. A conjugate direction
sampler behaves like a Lanczos eigensolver in finite precision. That is, search direc-
tions are doomed to lose conjugacy at some iteration k < n. The main theorem of this
section makes the connection between Lanczos and the covariance matrices of the CG
samples explicit, which describes why, without corrective measures, loss of conjugacy
prohibits sampling from the full Gaussians of interest. Nevertheless, the CG sampler
produces an approximate sample from N(0, A) with a realized covariance which is the
best k-rank approximation to A in the same k-dimensional Krylov space searched by
the CG linear solver. The CG sampler also produces an approximate sample from
N(0, A−1), which has a realized covariance that is the best k-rank approximation to
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A−1 in the same Krylov space. Like the difficulty faced by iterative eigenproblem
solvers, the accuracy of the Krylov k-rank approximations of A and A−1 depends on
the distribution of the eigenvalues of A.

3.1. Eigenpairs of the CG covariances are Ritz pairs. We saw in section
2.2 that in exact arithmetic, the CG sampler generates samples

yk|(y0, b) ∼ N(y0, PkD
−1
k PT

k ) and ck|(y0, b) ∼ N(Ay0, APkD
−1
k PT

k A),

and that these distributions converge toN(0, A−1) andN(0, A), respectively, as k → n
when A has distinct eigenvalues. How good are these distribution approximations
after k < n iterations when the conjugate directions used by the CG sampler lose
conjugacy?

This question has already been answered for yk|(y0, b). Lemma 2.1.2 shows that
Var(yk|y0, b) is similar to T−1

k , with eigenvalues that are the reciprocals of the Ritz
values, {1/θki }. From (2.4) it follows that the eigenvectors of Var(yk|y0, b) are the
Ritz vectors {Vkq

i}, the Lanczos estimates of the eigenvectors of A.
Characterizing Var(ck|b, y0) when the CG sampler terminates with rk = 0 is

straightforward as well. In this case, Lemma 2.1.3 and (2.3) show that the CG sampler
has converged to an invariant subspace, AVk = VkTk, which shows that Var(ck|y0, b) =
VkTkV

T
k . Dealing with the case when rk �= 0, addressed in the following theorem,

requires a little more work. The theorem holds as long as conjugacy of the search
directions, and orthogonality of the residuals and Lanczos vectors, is maintained.

Theorem 3.1. The covariance matrix of the CG sample yk is

Var(yk|y0, b) = VkT
−1
k V T

k ,

and it has k nonzero eigenvalues which are the Lanczos estimates of the eigenvalues of
A−1, σi(Var(y

k|y0, b)) = 1/θki . The eigenvectors of Var(yk|y0, b) are the Ritz vectors
Vkq

i which estimate the eigenvectors of A. The covariance matrix of ck = Ayk is

Var(ck|y0, b) = VkTkV
T
k + ηk(v

kv(k−1)T + vk−1vkT ) +

∣∣∣∣ βk

γk−1

∣∣∣∣ vkvkT(3.1)

with ||Var(ck|y0, b)||2 ≤ θkk + |βk/γk−1|. When ||rk||2 = 0, then

Var(ck|y0, b) = VkTkV
T
k ,

and the k eigenpairs of Var(ck|y0, b) with nonzero eigenvalues are the Lanczos Ritz
pairs (θki , Vkq

i).
Proof. See Appendix A.2 for the derivation of 3.1. When ||rk||2 = 0, Lemma

2.1.3 shows that ηk = βk = 0, and consequently the eigenpairs of Var(ck|y0, b) are the
Lanczos Ritz pairs.

It is shown in [32] that Tk is a Rayleigh quotient,

Tk = argmin
ζ∈�k×k

||AVk − Vkζ||2.

That is, VkTkV
T
k is the best k-rank approximation of A in Kk(A, r0) for any k. Since

the CG sampler drives the residual to zero at iteration k, the covariance matrices of
the CG samples satisfy this same optimality criterion. The following corollary follows
from Theorem 3.1 and Remark 2.
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Corollary 3.2. In exact arithmetic, if the CG sampler terminates with ||rk||2 =
0, then all Ritz pairs {(θki , Vky

i)}ki=1 have converged to k eigenpairs {(λj , w
j)} of A

and

(A−1 −Var(yk|y0, b))v = 0 and (A−Var(ck|y0, b))v = 0

for any v ∈ Kk(A, r0).
Remark 4. In light of Remark 3, Corollary 3.2 shows that when the CG sampler

terminates with ||rk||2 = 0, Var(yk|y0, b) and Var(ck|y0, b) are the best k-rank approx-
imations to A−1 and A, respectively, in the eigenspaces corresponding to the extreme
and well-separated eigenvalues of A. In other words, the CG sampler has successfully
sampled from these eigenspaces.

Another consequence of Theorem 3.1 (which follows from Weyl’s theorem [32]
and the triangle inequality) is that the 2-norm of the error in covariance estimation
is at least as large as 1/λy, the largest eigenvalue of A−1 not being estimated by the
Lanczos estimates {1/θki }ki=1, and it can get as large as this eigenvalue plus the error
in the Lanczos estimates,

1/λy ≤ ||A−1 −Var(yk|y0, b)||2 ≤ 1/λy + ||WkΛ
−1
k WT

k − VkT
−1
k V T

k ||2.(3.2)

In this equation, if {(1/λj, w
j)} are the k eigenpairs of A−1 being estimated by the

Lanczos pairs {(1/θki , Vkq
i)}ki=1, then Wk is an n × k matrix with the orthonormal

vectors {wj} as columns, and Λk = diag({λj}). In exact arithmetic, when the CG
sampler terminates with ||rk||2 = 0, Corollary 3.2 shows that

||A−1 −Var(yk|y0, b)||2 = 1/λy.

Similarly, if λc is the largest eigenvalue of A not being estimated by the Ritz values
{θki }ki=1, then

λc ≤ ||A−Var(ck|y0, b)||2 ≤ λc +
∣∣∣∣∣∣W−kΛ

−1
−kW

T
−k − VkTkV

T
k

−ηk(v
kv(k−1)T + vk−1vkT )−

∣∣∣ βk

γk−1

∣∣∣ vkvkT ∣∣∣∣∣∣
2
.

(3.3)

In this equation, if {(λj , w
j)} are the k eigenpairs of A being estimated by the Lanczos

Ritz pairs {(θki , Vkq
i)}ki=1, then W−k is an n× k matrix with the orthonormal vectors

{wj} as columns, and Λ−k = diag({λj}). By Theorem 3.1 and Corollary 3.2, if the
CG sampler terminates with ||rk||2 = 0, then ||A−Var(ck|y0, b)||2 = λc.

Equation (3.1) given in Theorem 3.1 also applies to the conjugate direction sam-
pler given by Schneider and Willsky [44, eq. 33]. However, the rest of the theorem
does not apply, since that sampler does not drive the CG residual to zero.

3.2. CG sampling in finite precision. In finite precision, we saw in section
2.4 that loss of conjugacy can happen at the same time that CG converges with a
small residual, in which case the optimality of the CG sample covariance matrices
outlined in Theorem 3.1 and Remark 4 holds. On the other hand, loss of conjugacy
can occur before the CG sampler drives the residual to zero. In this case, at the
iteration when loss of conjugacy occurs, Theorem 3.1 still assures that Var(yk|y0, b) is
the best approximation to A−1 in the Krylov subspace which contains the converged
Ritz vectors.

If loss of conjugacy occurs at some iteration k before the CG residual has con-
verged to zero, (3.1) describing Var(ck|y0, b) in Theorem 3.1 holds. The magnitudes of
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the scalars |βk/γk−1| and ηk in this case indicate how well Var(ck|y0, b) approximates
A in the Krylov subspace which contains the converged Ritz vectors.

The Kaniel–Paige–Saad theory suggests that Ritz pairs will converge to the ex-
treme eigenpairs by iteration k = 2

√
n [32], and so loss of conjugacy of the search

directions and loss of orthogonality of the CG residuals will occur by then as well.
Thus, without remedy, Lanczos is useful for accurately estimating at most k = 2

√
n

eigenpairs of A. By Theorem 3.1, the CG sampler is guaranteed to sample from at
least these eigenspaces.

The numerical examples in section 4 suggest that after loss of conjugacy, run-
ning the CG sampler until the residual is small does not have a deleterious effect
on the samples. On the contrary, the CG sampler does continue to sample from new
eigenspaces, since Var(yk) better approximates A−1, and Var(ck) better approximates
A as iterations continue to drive the residual to zero.

3.3. Var(yk) is the CG polynomial. Viewing the CG sampler as a Lanczos
process allows Var(yk|y0, b) to be described with respect to the CG polynomial de-
scribed in [3, 30, 31]. From the fact that range(Pk+1) = Kk+1(A, r0), we can re-express
the conjugate directions in terms of the Krylov basis:

Pk+1γ
k+1 =

k∑
i=0

τiA
ir0 = ϕk(A)r

0,

where {τi} are scalars, γk := [γ0, . . . , γk−1]
T is the vector of one-dimensional mini-

mizers from the CG algorithm, and ϕk is the kth order CG polynomial. Thus, the
CG optimizer can be written as

xk+1 = x0 + Pk+1γ
k+1 = x0 + ϕk(A)r

0.

We have the following theorem.
Theorem 3.3. The CG polynomial ϕk−1(A) is equivalent to Var(yk) in Kk(A, r0).

That is, vT (Var(yk)− ϕk−1(A))v = 0 for every v ∈ Kk(A, r0).
Proof. As in [26, 31], define the kth order Lanczos polynomial as

νk(θ) := 1− ϕk−1(θ)θ,

which is shown to be proportional to the characteristic polynomial of Tk in [26, p. 76].
Since {(θki , qi)} are the eigenpairs of Tk, νk(θ

k
i ) = 0, which implies that νk(θ

k
i )q

i =
νk(Tk)q

i = 0, and so the CG polynomial ϕk−1(Tk) has
(
1/θki , q

i
)
as eigenpairs:

ϕk−1(Tk)q
i = T−1

k (I − νk(Tk))q
i = T−1

k qi =
1

θki
qi.

Since Tk = V T
k AVk and Vk has orthonormal columns, by Theorem 3.1 it holds that

vT (ϕk−1(A)−Var(yk|y0, b))v = 0 for any v ∈ range(Vk) = Kk(A, r0).
Theorem 3.3 suggests that polynomial preconditioners which estimate the charac-

teristic polynomial of A for linear solvers [19, 31, 39, 41, 48] can be used for samplers
by damping out the eigenspaces that have already been sampled, much like the poten-
tially expensive reorthogonalization [20, 32] methods used to maintain orthogonality
in Lanczos. We investigate this possibility elsewhere.
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3.4. Using traces to assess the accuracy of the CG covariances. In (3.2)
and (3.3) we bounded the 2-norm of the covariance error for each of the two types
of CG samples and showed that when the CG sampler converges in exact arithmetic,
the 2-norm is equal to the largest eigenvalue not being estimated by the underlying
Lanczos process. We do not know of an inexpensive way to explicitly calculate these
bounds for large problems. Instead, we now provide an inexpensive yet potentially
coarse Monte Carlo measure of how accurate the covariances of the CG samples are.

In principal component analysis (also called a Karhunen–Loeve decomposition),
a common way to assess the appropriateness of representing n-dimensional data by
projections onto k < n eigenvectors of the sample covariance matrix is to consider
the ratio of the trace of the covariance of the projections to the trace of the original
covariance matrix [35]. The ratio of traces is equal to the fraction of mean-squared
error reduction [44]. In the context of the CG sampler, a computationally trivial
way to assess how well the covariance matrix A is represented by Var(ck|y0, b) is to
compare trace(A) to trace(Var(ck|y0, b)). Since Ritz values interlace the eigenvalues
of Var(ck|y0, b) (see Lemma A.1), trace(Tk) ≤ trace(Var(ck|y0, b)) (with equality if
||rk||2 = 0), which yields the lower bound on the proportion of the variance not
described by Var(ck|y0, b), ∑

αi

trace(A)
≤ trace(Var(ck|y0, b))

trace(A)
.(3.4)

This ratio is similar to the stopping criterion for the sampler presented in [44], and
should be calculated at the last CG sampler iteration before conjugacy of the search
directions is lost. Lemma 2.1.3 shows how {αi} can be computed from the CG sampler.

The proportion of the variance A−1 represented by Var(yk|y0, b) is quantified by
trace(Var(yk|y0, b))/trace(A−1). By Theorem 3.1, this is trace(T−1

k )/trace(A−1). The
numerator trace(T−1

k ) should be calculated at the last CG sampler iteration before
conjugacy of the search directions is lost. Computing T−1

k directly is not necessary
since

trace(T−1
k ) =

k−1∑
j=0

1

||rj ||22

k−1∑
i=j

γi||ri||22(3.5)

(see Appendix A.3), and so is easily calculated by maintaining a cumulative sum from
quantities available from the CG sampler.

Since A is large, trace(A−1) cannot be calculated directly. Fortuitously, a Lanczos
procedure is well suited to this task [5, 26]. When initialized with v0 = u/||u||2,
Lanczos implements Gaussian quadrature to estimate uT f(A)u for any vector u and
any function f of A:

uTf(A)u ≈ ||u||22
k∑

i=1

(qi1)
2f(θki ) = ||u||22e1T f(Tk)e

1.

That is, the nodes for Gaussian quadrature are the Ritz values {θki }, and the weights
are the squares of the first components of the eigenvectors of Tk (times ||u||22). More
specifically, when initialized with b = u and y0 = 0, CG and the CG sampler imple-
ment Gaussian quadrature to estimate

uTA−1u ≈ ||r0||22[T−1
k ]1,1 =

k−1∑
i=0

γi||ri||22.(3.6)

The equality in (3.6) follows from Lemma 2.1.2 (see Appendix A.3).
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An infeasible way to use (3.6) to approximate trace(A−1) is to run CG with u = ej

to estimate [A−1]jj = ejTA−1ej for each j. To estimate trace(A−1) in one Lanczos
run, an ingenious Monte Carlo approach is given in [5], for which Lanczos needs to be
initialized with an n × 1 random vector u of −1’s and 1’s (with equal probability of
each, denoted hereafter as u = (±1,±1, . . . )). In fact, initializing Lanczos with any
random vector composed of independent, zero mean, and unit variance entries yields
an unbiased trace estimate, but u = (±1,±1, . . . ) has minimum variance [49]. When
the CG sampler is run m times to generate m independent samples, the individual
trace estimators from each run can be averaged together to yield an estimator with
variance decreased by a factor of 1/m. The number of runs m required to reach a
specified level of precision depends on the spread of the eigenvalues of A [49].

In the examples in section 4, we initialize the CG sampler with either a random
vector b = u = (±1,±1, . . . ) or b ∼ N(0, I), use (3.5) (before loss of conjugacy) to
compute trace(T−1

k ), and then use (3.6) to estimate trace(A−1). In this way, the CG
sampler can estimate the proportion of the variance in A−1 explained by Var(yk) at an
additional expense of a vector inner product per iteration. Calculating the proportion
of the variance in A explained by Var(ck) using (3.4) is trivial.

3.5. Intrinsic Gaussian distributions. It is sometimes desirable to draw sam-
ples from Gaussians with singular precision or covariance matrices. Examples of such
distributions are the intrinsic Gaussian distributions resulting from a locally linear
definition of the precision matrix of a Gaussian Markov random field (GMRF) in a re-
gion with a boundary [22, 38], or as conditional distributions [10]. These distributions
are improper, having a precision matrix that is symmetric positive semidefinite with
a nontrivial nullspace null(A), making the density invariant under addition of any
element of null(A). Hence the mean and covariance are undefined (or unbounded). In
typical applications the component of the nullspace in a sample is fixed, usually at 0,
in which case the mean and covariance are defined with the covariance matrix being
the (Moore–Penrose) generalized inverse of the precision matrix.

The CG sampler in Algorithm 1 will draw samples from an intrinsic Gaussian,
without modification. Consider the case when the precision matrix has nontriv-
ial nullspace null(A). The residual at each step rk is orthogonal to null(A), i.e.,
rk ⊥ null(A) since null(A) = null(AT ), and hence by induction all of the conjugate
directions are also orthogonal to the nullspace, pk ⊥ null(A). Simply initializing
y0 = x0 = 0 gives x0 ⊥ null(A), and by induction the CG minimizer xk satisfies
xk ⊥ null(A) for every k. Similarly, the CG sample yk ⊥ null(A) for all k. Thus,
in exact arithmetic, when the algorithm terminates with k = n − dim (null(A)), the
resulting sample is correctly distributed with a zero component in null(A), as shown
in section 2.1. More generally, initializing the CG sampler with y0 which has a compo-
nent ynull ∈ null(A) gives a sample yk with component ynull in null(A). Effectively, the
algorithm does not “see” null(A) and operates entirely in the orthogonal complement
of null(A).

In finite precision, zero eigenvalues of A may effectively be small nonzero values,
and vice versa. Hence, for matrices with a large condition number, the notion of a
Moore–Penrose generalized inverse is not robust to numerical error, and the CG sam-
pler may not produce samples distributed according to the desired intrinsic Gaussian
distribution. Note that the convergence theory we have given for the CG sampler
holds only for symmetric positive definite matrices.

4. Examples. We next consider two illustrative examples, for which we used
the CG sampler to generate samples yk∼̇ N(0, A−1) and ck∼̇ N(0, A) to numerically
investigate the difference between the theoretical result in exact arithmetic that the
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CG sampler produces samples from N(0, A) and N(0, A−1), and the realized distri-
butions of the CG samples in finite precision. As we have seen, the reason there is a
difference is the loss of conjugacy of the sampling directions, and the accuracy of the
realized covariance of the CG samples depends on the distribution of the eigenvalues
of the covariance matrix.

The first example we consider is a covariance model A = Σ, commonly used to
account for dependencies among measurements close in space or time, that exhibits
the characteristic sharp drop in covariance at some critical point. The eigenvalue
distribution for this type of covariance matrix is ideal for the CG sampler: the large
eigenvalues of A are well separated, while the small eigenvalues are clustered together
near zero. We chose a one-dimensional domain to easily visualize the samples, and a
small 100× 100 example was used so that convergence of the CG covariance matrices
with respect to the 2-norm could be easily monitored. In the second example, we
considered a common sparse precision matrix model A = Σ−1 which presumes that
points in space or time are conditionally independent if they are in different neigh-
borhoods. For computational efficiency, we used a small 100× 100 precision matrix.
For a 104 example with this same precision model, the qualitative differences between
a Cholesky sample and a CG sample are shown, the latter with a realized covariance
which captures only 80% of the variability in the full space.

In addition to the matrix A, the CG sampler requires two initial vectors, y0

and b. In all of the simulations presented, y0 = 0. Two different values for b were
considered. In the first case, each component of b was randomly assigned −1 or 1,
each with probability .5; then this b = (±1,±1 . . . ) was fixed and used in 105 sampler
runs. This initialization with a fixed vector b allowed us to numerically assess the
accuracy of the CG covariances Var(yk|y0 = 0, b) (see (2.1)) and Var(ck|y0 = 0, b).
In our experience, the numerical results using other fixed vectors b are similar to
those presented here. The second initialization considered was for b ∼ N(0, I), where
b was randomly chosen for each of the 105 sampler runs. This initialization was
chosen in order to numerically assess the effect of using a random vector b ∼ N(0, I)
on the CG covariances, Var(yk) = Eb(Var(y

k|y0 = 0, b)) (see (2.2)) and Var(ck) =
Eb(Var(c

k|y0 = 0, b)). Each of the two initializations allows the CG sampler to
estimate trace(Var(yk))/trace(A−1), the proportion of variability in A−1 described
by the CG covariance, in each run (see section 3.4).

4.1. Squared exponential covariance function. The example in this section
shows how the CG sampler can be used to generate a sample from a Gaussian process
with a specified covariance A = Σ. Gaussian processes with a squared exponential
covariance (or Gaussian covariance) model over some domain S are commonly used
in applications [22, 25, 29, 34, 45, 52, 55]. Consider the Gaussian covariance matrix
Σ with elements

Σij = 2 exp

(
− (si − sj)

2

2(1.5)2

)
+ εδij

for 100 regularly spaced values si in the one-dimensional domain S = [−3, 3], with
ε = 10−6, and δij = 1 if i = j, and zero otherwise. Setting A := Σ, we calculated
105 samples from each of the 100-dimensional Gaussians N(0, A) and N(0, A−1) using
both the CG sampler and a Cholesky factorization. The results are given in Figure
4.1 and in Tables 4.1 and 4.2. Note that A is 100×100, ||A||2 = 103.5, ||A−1||2 = 106,
and the condition number is κ(A) = ||A||2||A−1||2 ≈ 108.
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Fig. 4.1. In the left panel, a Cholesky sample is compared with a CG sample from N(0, A)
(after k = 60 CG sampler iterations) for the 100× 100 Gaussian covariance matrix A. In the right
panel, the eigenvalues of the 100 × 100 Gaussian covariance A are shown as dots, in ascending
order, versus the indices 84 to 100. The open circles are the eigenvalues of the realized CG sample
variance Var(ck) at iteration k = 8, right before loss of conjugacy. For ease of viewing, the 92 zero
eigenvalues of Var(c8) have been depicted near 10−15.

For 0 < ε ≤ 10−16, A is ill-conditioned, and a Cholesky factorization (and the
conventional sampling approach) is not possible using MATLAB 2006a. When the
diagonal additive component is ε = 0, A has a large dimensional nullspace, and
Cholesky factors do not even exist. As suggested by the discussion in section 3.5 for
positive semidefinite matrices, the CG sampler does produce samples with the desired
smoothness for 0 ≤ ε ≤ 10−16, although with large amplitudes on the order of 105

(not shown), possibly due to contributions from the nullspace null(A).
Over the 105 samples with the initialization b = (±1,±1, . . . ), the CG sampler ran

an average of k = 60 iterations (see row 2 of Table 4.1) and terminated when the CG
residual was small, ||rk||2 < 10−4. Due to finite precision, conjugacy of the sampling
directions was lost at iteration k = 9. We calculated an additional 105 samples by
forcibly terminating the CG sampler at iteration k = 8 (see row 1 of Table 4.1).
The results show that the realized variance of the CG sample ck| (b = (±1,±1, . . . )),
estimated from the 105 samples, is very close to A, regardless of whether the sampler
was terminated at iteration k = 8 or k = 60. Although this level of accuracy at
iteration k = 8 is not necessarily assured since ||r8||2 = 57, Theorem 3.1 still predicts
that A ≈ Var(c8) since |β8/γ7| = .0093 and η8 = .2756.

For the 105 runs using the second initialization with b ∼ N(0, I), it was clear that
the CG sampler must be run past loss of conjugacy to get rk ≈ 0 (see the third and
fourth rows of Table 4.1).

Remark 4 shows that the realized CG covariance matrices are accurate only in the
eigenspaces corresponding to the well-separated eigenvalues of A. Figure 4.1 shows
that the large eigenvalues of A are well separated with many eigenvalues near ε = 10−6.
This explains why Var(ck) approximates A well. By the 8th CG sampler iteration,
the eigenspaces corresponding to the largest 8 eigenvalues have already been sampled,
and so already, Var(b8) approximates A, accounting for over 99% of the variability in
the 100-dimensional N(0, A). The fact that loss of conjugacy coincides with accurate
approximations of these eigenpairs of A is a hallmark of Lanczos methods (section
2.4). After loss of conjugacy, subsequent conjugate directions leak back into these 8
eigenspaces, which illustrates the failure of the CG sampler, and of Krylov methods
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Table 4.1

Comparing sample covariance matrices Var(ck) of Cholesky and CG samples ck ∼̇ N(0, A)
when A is a squared exponential (Gaussian) covariance matrix, with ||A||2 = 103.5. Each row in
the table summarizes the results from 105 samples.

Method b k ||Var(ck)||2 ||A−Var(ck)||2
||A||2

trace(Var(ck))
trace(A)

CG sampler (±1,±1, . . . ) 8 102.7 .0081 .9965
60 104.0 .0059 1

N(0, I) 8 62895 606.7 −
57 103.7 .0058 .9980

Cholesky − − 103.3 .0044 1

Table 4.2

Comparing sample covariance matrices Var(yk) of Cholesky and CG samples yk ∼̇ N(0, A−1)
when A is a squared exponential (Gaussian) precision matrix, ||A−1||2 = 106. Each row in the table
summarizes the results from 105 samples.

Method b k ||Var(yk)||2 ||A−1−Var(yk)||2
||A−1||2

trace(Var(yk))

trace(A−1)

CG sampler (±1,±1, . . . ) 8 7348 1 .0001
60 999,580 1 .0291

N(0, I) 8 706.9 .9995 .0006
57 795,809 .9895 .0285

Cholesky − − 1,061,648 .0621 1

in general, to generate search directions which span all n eigenspaces of A. However,
Tables 4.1 and 4.2 show that the sampling directions generated past loss of conjugacy
do span some new eigenspace(s), since the CG samples yk and ck for k > 8 have
realized covariances that are closer to A−1 and A, respectively.

Theorem 3.1 also predicts that Var(yk) is a poor representation of A−1 since
10−6 is a repeated eigenvalue of A. Even after preconditioning as in [17], these
repeats remain clustered relative to the large eigenvalues of A. Table 4.2 confirms
that the realized variance of the CG sample yk is a poor approximation to A−1, with
||A−1−Var(yk)||2 ≈ ||A−1||2 = 106. Although yk is not of concern when the Gaussian
of interest is N(0, A = Σ), this result indicates the inability of the CG sampler to
generate samples using a precision matrix model which has many small eigenvalues
clustered together.

4.2. Second order locally linear precision matrix. The CG sampler can
also be seeded with a precision matrix A = Σ−1. We next consider a GMRF with a
specified precision matrix, a common approach in spatial applications, since the un-
derlying Markov assumptions yield a sparse precision matrix. The following precision
matrix Σ−1 is considered in [22, 38]:

[Σ−1]ij = 10−3δij +

⎧⎨⎩
ni if i = j,
−1 if i �= j and ||si − sj ||2 < 1.5,
0 otherwise.

The discrete points si are on a regular 10 × 10 unit grid over the two-dimensional
domain S = [1, 10] × [1, 10]. The number of points in a neighborhood of radius 1.5
centered at si, but not including si, is given by ni (e.g., n1 = 3, n2 = 5, n12 = 8).
The CG sampler was initialized with the 100× 100 matrix A := Σ−1 and y0 = 0 and
ran 105 times with b = (±1,±1, . . . ) and another 105 times with b ∼ N(0, I). The
CG sampler ran an average of k = 37 iterations under both initial conditions and
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Table 4.3

Comparing sample covariance matrices Var(yk) of Cholesky and CG samples yk ∼̇ N(0, A−1)
when A is a second order locally linear precision matrix with ||A−1||2 = 103 and trace(A−1) =
1.16 × 104. Each row in the table summarizes the results from 105 samples, except for the second
entry for Gibbs (see text).

Method b k ||Var(yk)||2 ||A−1−Var(yk)||2
||A−1||2

trace(Var(yk))

trace(A−1)

CG sampler (±1,±1, . . . ) 37 1003.93 .0040 .9902
N(0, I) 37 1006.17 .0062 .9923

PCG sampler (±1,±1, . . . ) 43 985.27 .0148 .9722
61 997.86 .0022 .9885

N(0, I) 43 998.30 .0082 .9789
61 1009.52 .0095 .9997

Gibbs (±1,±1, . . . ) 223 957.62 .7762 −
1.49× 105 − .0040 −

Cholesky − − 1001.48 .0017 1

Table 4.4

Comparing sample covariance matrices Var(ck) of Cholesky and CG samples ck ∼̇ N(0, A)
when A is a second order locally linear covariance matrix with ||A||2 = 11.61 and trace(A) = 684.1.
Each row in the table summarizes the results from 105 samples.

Method b k ||Var(ck)||2 ||A−Var(ck)||2
||A||2

trace(Var(ck))
trace(A)

CG sampler (±1,±1, . . . ) 37 11.66 1 .3187
N(0, I) 37 11.30 .6975 .3182

PCG sampler (±1,±1, . . . ) 43 11.14 .9311 .4425
61 11.48 .8794 .5776

N(0, I) 43 11.13 .7478 .4713
61 11.46 .6606 .5764

Cholesky − − 11.64 .0428 1

terminated when ||rk||2 < 10−4. Conjugacy was never lost. Note that ||A||2 = 11.61,
||A−1||2 = 103, and the condition number is κ(A) = 1.16× 104.

Results are given in Tables 4.3 and 4.4. Since the smallest eigenvalues of A are
spread out (not shown), the covariance of the CG sample yk is an accurate approxi-
mation of A−1. The rest of the eigenvalues larger than 1 are grouped close together,
so the covariance of the CG sample ck accounts for only about half of the variance
in A. Even in this case, Var(ck) and A are qualitatively very similar (not shown).
Although ck is not of concern when the GMRF of interest is N(0, A = Σ−1), this re-
sult indicates the inability of the CG sampler to generate samples using a covariance
matrix model which has many large eigenvalues clustered together.

At iteration k = 37, |βk/γk−1| = .4045, so again by Theorem 3.1, the eigenvalues
of Var(ck|y0, b) are essentially the Ritz values at loss of conjugacy. Now, however,
ηk = 1.9489, and so the eigenvectors of Var(ck|y0, b) have a larger error.

A PCG sampler was also run with the bidiagonal preconditioner described in
[17]. The CG sampler ran an average of k = 43 iterations under both initialization
conditions before losing conjugacy (on average, ||r43||2 = .1980) and terminated when
the norm of the CG residual was less than 10−4. Tables 4.3 and 4.4 indicate that
the PCG covariance approximations are only slightly better than the CG covariance
approximations.

A Gibbs sampler takes as input a precision matrix A = Σ−1 and generates samples
from N(0, A−1) at the same cost of 2n2 flops per iteration as the CG sampler. We
implemented a Gibbs sampler, as described in [9], in the current example. Table 4.3
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Fig. 4.2. In the left panel is a CG sample yk∼̇N(0, A−1) from a 104-dimensional Gaussian
over a two-dimensional domain with a second order locally linear precision matrix. The realized
variance Var(yk) accounts for 80% of the variability in A−1. A Cholesky sample is shown in the
right panel.

shows the results. Although Gibbs samples are guaranteed to converge in distribution
to the targetN(0, A−1), the geometric asymptotic convergence rate is very slow. After
k = 223 iterations, the diagnostic measures indicate that the realized covariance of
the Gibbs samples is far from convergence. A theoretical calculation (based on the
spectral radius of the Gibbs stationary linear operator, which is the same as that
employed by Gauss–Seidel [9]) was used to ascertain that 1.49 × 105 iterations are
required before the relative error of the realized precision matrix will be comparable
with that of the CG sampler, ||A−1 −Var(yk)||2/||A−1||2 ≈ .0040.

Figure 4.2 shows samples from a 104-dimensional Gaussian with a second or-
der locally linear precision matrix. The CG sampler exited after k = 315 itera-
tions when ||rk|| < 10−4, and conjugacy of the directions was maintained. The
104 × 104 matrix A has ||A||2 = 12, κ(A) = 1.2 × 105, trace(A) = 7.88, and
trace(A−1) = 1.38×104. The CG sample yk is an approximate sample fromN(0, A−1)
since trace(Var(yk))/trace(A−1) ≈ 0.80, a quantity which the CG sampler can esti-
mate (see section 3.4). Notice that the CG sample is much smoother than the Cholesky
sample given in Figure 4.2, showing how the exclusion of the small eigenvalues of A−1

(which account for the other 20% of the variability) affects the CG samples yk. The
variance of the CG sample ck in this case accounts for only 2.4% of the variability
described in A.

5. Conclusions. We have shown how the CG samples yk ∼̇ N(0, A−1) and
ck ∼̇ N(0, A) can be easily generated by adding a single inexpensive line of code
to CG. We have also given an analysis of the CG sampler which describes how it
works in practice without any corrective measures. The eigenpairs of Var(yk) are
the eigenpair estimates of A−1 found by Lanczos, and hence Var(yk) is a satisfactory
k-rank approximation to A−1 when the small eigenvalues of A are well separated and
the rest of the spectrum is relatively large, as is the case for common precision matrix
models (e.g., the locally linear Laplacian [38]). Similarly, the CG sample ck has a
realized covariance matrix which is a satisfactory k-rank approximation to A when
the large eigenvalues of A are well separated and the rest of the spectrum is relatively
small, which is the case for common covariance models (e.g., exponential and Gaussian
covariances over space and/or time [52]). Even when implemented with a matrix A
without such eigenvalue distributions, the CG sampler has been effective at generating
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samples and obtaining low rank covariance and precision matrix approximations when
implemented within the Kalman filter [7, 8].

The advantages of the CG sampler are that one can use the covariance or pre-
cision model of choice (i.e., restrictive low rank models [13] and simplifying Markov
assumptions [38] are not necessary), the potentially large matrix need never be con-
structed or factored, and simple numerical checks (presented in this paper) exist to
check the accuracy of the k-rank variances of the CG samples produced.

The disadvantage of the CG sampler is that the accuracy of the k-rank real-
ized covariance matrices of the CG samples depends on the eigenvalue distribution of
A, which is unknown for large complex models. In order to generate samples with
realized covariances which are arbitrarily close to the desired covariance, corrective
measures such as reorthogonalization have successfully been used [44]. Depending on
the distribution of the eigenvalues of the covariance matrix being modeled, the cost
of full reorthogonalization can be as much as O(n3) flops and can require storage of
large dense n×O(n) projection matrices. Computationally efficient semiorthogonal-
ization implementations are available (e.g., selective and periodic reorthogonalization
[4, 14, 20, 32, 46]), but memory requirements still increase linearly with the number
of eigenpairs of A that one needs to (implicitly) estimate. Schneider and Willsky
report that “the quality of simulation is not significantly affected by the type of or-
thogonalization used” [44, p. 300]. For large problems when reorthogonalization is
not feasible, one could instead try preconditioning to spread out the eigenvalues of
A, which is inexpensive when the n × n preconditioning matrix is sparse. However,
as we have seen in the numerical examples, this improves accuracy only marginally.
Another option is to use an iterative Gibbs sampler, accelerated by initialization with
a CG sample, at a cost of 2n2 flops per iteration. Again, however, the caveat is that
the geometric convergence of the Gibbs sampler is reduced by only a constant factor,
and only when (A−1 − Var(yk)) lies in the eigenspaces corresponding to the small
eigenvalues of the Gibbs stationary operator. This is an area of active research.

The disadvantages just outlined, common to any Lanczos process, are due to a
failure to maintain an orthogonal basis for the associated Krylov space. Krylov sam-
plers, however, need not suffer from this same issue, since explicit estimates of the
eigenpairs are not necessary in order to sample from the associated eigenspaces. For
the CG sampler, the equivalence between the realized covariances and the CG and
Lanczos polynomials are the impetus for another area of active research, where com-
mon inexpensive polynomial preconditioning techniques for linear solvers are applied
to generate exact samples from high dimensional Gaussians of interest.

Appendix.

A.1. Proof of Lemma 2.1. To prove the first part of the lemma, define the
k × k diagonal matrices

Δk := diag(||r0||, . . . , ||rk−1||), Nk := diag(1,−1, 1, . . . )

and define the upper bidiagonal matrix

Bk =

⎛⎜⎜⎜⎝
1 β1

. . .
. . .

1 βk−1

1

⎞⎟⎟⎟⎠ .
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Now the relation rk = pk + βkp
k−1 can be written as Vk = PkBkΔ

−1
k Nk, which

shows that range(Pk) = range(Vk). Since rkT pi = 0 for every i < k, multiplying
pk = rk − βkp

k−1 by rkT shows that

rkT pk = rkT rk.(A.1)

Thus, letting Rk = ΔkB
−1
k Nk yields a QR factorization Pk = VkRk since Rk = V T

k Pk

is upper triangular with elements

[Rk]ij = (−1)i−1 r
(i−1)T p(j−1)

||ri−1||(A.2)

which are zero for all i > j. The second part of the lemma is proved by rewriting
the statement of conjugacy PT

k APk = Dk as RT
k V

T
k AVkRk = RT

k TkRk = Dk and so
PkD

−1
k PT

k = VkRkD
−1
k RT

k V
T
k = VkT

−1
k V T

k . To prove part 3, define the lower bidiag-

onal matrix Lk := R−T
k so that Tk = LkDkL

T
k (similar to the “LDLT” factorizations

of Tk considered in [6, 14, 20, 26, 32, 33]). Now multiply the right-hand side out and
equate the components of the right-hand side with Tk. Part 4 follows from applying
(A.1) and (A.2) to the components of Tk = LkDkL

T
k .

A.2. Proof of Theorem 3.1. Let σi(B) denote the ith eigenvalue of an m×m
symmetric matrix B, σ1(B) ≤ · · · ≤ σm(B), and let σ−i(B) denote the eigenvalues in
descending order σ−1(B) ≥ · · · ≥ σ−m(B).

Lemma A.1. The k nonzero eigenvalues of Varb := Var(ck|y0, b) interlace the
Lanczos estimates of the eigenvalues of A,

θk−k ≤ σ−k(Varb) ≤ θk−(k−1) ≤ · · · ≤ σ−2(Varb) ≤ θk−1 ≤ σ−1(Varb) ≤ θkk +

∣∣∣∣ βk

γk−1

∣∣∣∣ .
Proof. Consider the decomposition Vn = [Vk Ṽk]. Then

Tn = V T
n AVn =

(
V T
k AVk V T

k AṼk

Ṽ T
k AVk Ṽ T

k AṼk

)
=

(
Tk ST

S T̃k

)
,(A.3)

where T̃k is tridiagonal and S = ηke
1ekT is an (n − k) × k matrix, where the only

nonzero element is the upper right entry ηk. Now pre- and postmultiplying the equa-
tion PkD

−1
k PT

k = VkT
−1
k V T

k by A shows that Var(ck|y0, b) has the same eigenvalues
as

T−1
k V T

k A2Vk = T−1
k V T

k AVnV
T
n AVk = T−1

k [V T
k AVk V T

k AṼk]

(
V T
k AVk

Ṽ T
k AVk

)
= T−1

k (T 2
k + STS) = Tk + η2kT

−1
k ekekT .

The second term in the last equation is a rank one update. Thus, for i ≤ k − 1, we
have that [20, 32] σi(APkD

−1
k PT

k A) ∈ [σi(Tk), σi+1(Tk)] = [θki , θ
k
i+1]. Substituting in

T−1
k = QkΘ

−1QT
k (see (2.4)) shows that η2kT

−1
k ekekT has the nonzero eigenvalue

η2ke
kTT−1

k ek = η2k

k∑
i=1

(qik)
2

θki
=

∣∣∣∣ βk

γk−1

∣∣∣∣(A.4)

by Lemma 2.1, parts 3 and 4. Now apply Weyl’s monotonicity theorem [32].
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To get the eigenvectors, start with (2.1) and apply (2.3):

Var(ck|y0, b) = APkD
−1
k PT

k A = AVkT
−1
k V T

k A

= (VkTk + ηkv
kekT )T−1

k (VkTk + ηkv
kekT )T

= VkTkV
T
k + ηk(v

kv(k−1)T + vk−1vkT ) +

∣∣∣∣ βk

γk−1

∣∣∣∣ vkvkT ,(A.5)

where the last equation follows from (A.4).

A.3. Estimating trace(A−1). The results in section 3.4 follow from the fol-
lowing lemma.

Lemma A.2. [T−1
k ]j+1,j+1 = 1

||rj ||22
∑k−1

i=j γi||ri||2.
To see this, (A.1), conjugacy of the p0, . . . , pk, and the fact that pkT rj = 0 when

j > k show that for any 0 ≤ j ≤ k − 1,

||rk||22 = pkT rk = pkT (b−Axk
CG) = pkT

⎛⎝b−A

⎛⎝xj +

k−1∑
i=j

γip
i

⎞⎠⎞⎠ = pkT rj .

Now Lemma 2.1.2 shows that [T−1
k ]j+1,j+1 = e(j+1)TT−1

k ej+1 = e(j+1)TRkD
−1
k RT

k e
j+1

and e(j+1)TRk = e(j+1)TV T
k Pk = (−1)j

||rj|| (0, . . . , 0, ||rj ||2, . . . , ||rk−1||2). The lemma now

follows from the definition of γi given in Algorithm 1.
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