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Abstract

Mathematical modeiling in the study of physical acoustics has proved to be extremely
accurate and useful in some sitnations (within small enclosed spaces) and complelely useless
in others (large open spaces). We derive the usual mathematical model for sound propagation
from simple principles so that its range of validity can be seen. Some analytical and numerical
methods of solution are briefly discussed.

1 Introduction

This paper, and talk, address the issue of mathematically modelling the propagation of sound
and how we can use the models to calculate features of a sound field — without doing experiments.
Modelling usually start with what we know about the system being modelled. For our starting
point I'll use the fairly common observation that sound is produced when something vibrates
(a wall, a larynx) and pushes air backwards and forwards. The disturbance created in the air
propagates and we hear sound.

1.1 Molecules of Air

We know that air is made up of molecules that are jigling around. The air interacts with the
wall through collisions of individual molecules with the wall - a bit fike peas bouncing on a roof
except on a smaller and faster scale.

We might first think of building a mathematical model by representing the position and
velocity of each air molecule and then simply follow their motion to find how sound propagates.
But since there is about 2.5 x 10%2° molecules per cubic metre of air! there is little future in this
approach.

"The huge number of molecules is a mixed blessing. While it is too large to work with it does
mean that we can represent the air by average properties to a very good accuracy because we
know that sound only occurs as a cooperative activity between very many molecules. For the
purpose of the averaging process we will consider a cube of air, 1pm on each side, which has five
rigid sides and one that can act as a piston. How did I know the number of molecules in a cubic
metre? Because the pressure P, volume V, number of molecules n and absolute temperature T
are related by

PV = nkT

where £ = 1,381 x 1072*J /K is Boltzman’s constant. So at atmospheric pressure {1.013 x 10°
N/m? and room temperature (293 K) that puts a managable 2.5 x 107 molecules in the (lpm)?
cube of air. Certainly enough to average over. And since each molecule is moving with {rms)
speed of 5 x 10%m/s (1), each molecule will bang against each wall of the box a million times each
micro-second, so the averaging in time of the individual collisions is a very good approximation.

land less than 10*° bytes of memory exist



15.2

force

Figure 1: (1um)? of air with force applied to one face

The relationship between pressure applied on one face to the volume can be found from the
previous equation — at least if the pressure is applied slowly. In that case the molecules have
time to stay at thermal equilibrium and so the temperature remaius constant? and we find

P
Pp+Vo=10 or p= *VU

where p and v are the changes in the mean values of pressure P and volume V', respectively. If
however, the pressure is applied rapidly so that no heat has time to flow® we find instead that

P
¥
As the pressure is applied the box of air will move according to the difference of pressures
on opposite faces. For example the difference in pressure in the = direction is % x Ipm and so
the nett force in the « direction is gg X lpm x1gm?. It is convenient to write
Vo= (5 5y3)
P=\0z2 9y 02

so we can write the total nett force as

nett force = Vp x V.

Newton’s second law, ' = ma, tells us that if q is the average velocity of the molecules in the
box then the average acceleration is

a .
5 =~V (2)
where p is the density of air.

The box will also be squashed a little by the extra pressure. We can relate the change in
volume v to the velocities q as follows. The difference of velocities of opposite faces in the z

direction is %Qf x 1um and so the difference of distances travelled in some short time, say 1us,

is %’?” x 1umx1ys. The resulting change in volume is %95 x 1pumx1pusx tum?. The total change

in volume, tak !{1@ three coordinate directions into account is { 2= + 2y 4 %4:) Y % 1ps. The
dz Ay dz K

term, (%i; + %’%’- + %qzz) is concisely written V -q (notice the dot) and since the change in volume

in 1us equals %—;’ x 1us we have

dv

—a_v-q. | (3)

?this cange is isothermal
*this change is adiabatic
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Equations (1), (2), and (3) may be combined to eliminate the variables other than p — which
is the sound pressure — to give
2, _ 1 &*p
P= aae
where ¢ = \/T4P/p and V2p = V -(Vp) is the Laplacian. It should be noted that the Laplacian
is unchanged in form when the coordinates are rotated.

1.2 Particular Solutions

Now that we have a mathematical model for the way the acoustic pressure propagates, we can
manipulate the model to find features of the sound field, or every detail of the sound field, in
spaces and with acoustics sources of interest.

We typically use the model fo predict acoustic propagation in two ways: The first, in the
spirit of our derivation, is to simulate the acoustic pressure as it develops in time and space
away from some source. For example, if we know the sound pressure at some initial instant and
we know the sound pressure generated at any sources then we can follow the development of
of the pressure in time at all points in space. Usually we would start with silence, ie. p =0
at t = 0, turn on the acoustic source(s) and at each instant in time use the spatial dependence
to evaluate the left-hand side of the wave equation which tells us how the pressure changes in
time — since that is the right-hand side. The second less obvious use is to verify that a given
function p(x, 1), depending on spatial coordinates x = (z,y, z) and on time ¢, satisfies the wave

.equation and hence is an allowable sound pressure field. This approach is often used in simple '
cases where it is possible to make an educated guess at the sound pressure field and the guess
is verified by seeing that it satisfies the wave equation. _ '

The educated guess required for the second usage is made easier by there being a wide class
of functions that satisfy the wave equation; If g(u) is any function then

})((-’L’, Y. 3)1 t) = g(.‘l'. - Ct)

solves the wave equation?. Note that p((z,y,z),1) represents a disturbance propagating in the
positive-z direction at speed ¢ as shown in Figure 1. As mentioned earlier, the part of the

Figure 2: The sound pressure p{{2,y, z),1) = g(x — ¢t} propagates to the right, so at time #y the
distrubance has moved by o = ¢/tp.

wave equation depending on the space variables is unchanged by rotation of the coordinates.

. . d” 2
*1t is casy to check that p((z,y,2),t) = g{z — ct) solves the wave equation since 5_1; = g—%(x — ¢t) while
. €T k3
1 8%

a? & & 28 2 :
SF=0=35L and 5F = (~c)*G;f(z —cf) and 50 V'p = aaE desired.
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So there is nothing special about the z-axis and we could have set p((z,y,2),t) = g(y — ct)
or p((z,y,2),t) = g(z — ct) to form disturbances in the positivey or positive-z directions,
respectively.

More generally it is not too difficult to show that

p((z,y, 2),0) = kot + kyy + koz — /KL + K + Klet).

also satisfies the wave equation and so gives a possible sound pressure field. In this case
»{{x,y, z),t) represents a disturbance propagating in the direction of the vector (kg ky, k.) with
speed ¢. The most important example from this class of pressure fields occurs when the under-
lying function is a sine wave and we find the solation

p((z,9,2),1) = sin (Kot + kyy + ka2 = s [k2 4 k2 + k2et) .

It is conventional (and brief) to write

k:(kr‘}kwkz) kz\[ﬁ.g+k§+k§ w = ke

allowing the shorthand form
p(x,t) = sin(k - x — wt).

This sound pressure is a plane wave of single frequency f = "g— and, equivalently, of wavelength
iy

2%
A= — propagating in the direction k. Note that the length of the vector k is proportional to

the frequency while the direction of k equals the direction of propagation.
Another important solution is given by the more esoteric function

sin(k|jxl] — wt)

7O = ]

which is an outward travelling spherical wave such as radiates from a small single-frequency
source located at {z,y,z) = (0,0,0). Because of its spherical symmetry®, this is the field
resulting from a harmonicly oscillating monopole located at the origin.

The previous solution can be further modified to find other, important solutions. For example
the gradient along the z-direction of the monopole sound field is

= X kcos(k||x]| - wt) sin(k||x]| — wt)
o) = 5 (e )

and this also is an allowable sound field because it satisfies the wave equation® This solution
corresponds to the sound field produced by a dipole source such as an unbaffled Joudspeaker
driven at a single low frequency.

5The sperical symmetry can be seen because the spatial dependence of p is determined by ||x|| alone which is
the distance from the origin.

This follows because the action of taking the gradient in the s-direction (any direction} commules with the
operations V* and —‘%; in the wave equation.
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1.3 Does it work?

The sound fields found in the last section are all ones that simply propagate away from the
source with no reflections occuring. So we might hope to apply these mbdel fields to outdoor
propagation problems where sound can travel large distances without m ting an obstacle. How-
ever, comparisons of measurements made over distances of about 1km’with the theory are very
disapointing. In fact, it is difficult to find such cases where the there is any merit in our model.

For example, from my house in Onehunga I can see the motorway one kilometre -away
approaching the harbour bridge’ and am able to watch the rush-hour traffic while I eat breakfast.
Some mornings I can also hear the traffic noise, it can sometimes sound as though the cars are
only a hundred metres away, and yet other mornings the clearly visible cars are completely
inaudible to me. Being of a scientific disposition I have noticed that the difference in audibility,
among mornings when the air is still, correlates with atmospheric conditions and particularly
with air temperature. This kind of discrepency aliows us to improve the model by examining
the way temperature entered the model. In our derivation the lemperature was assumed to be
constant and the resulting value for the speed of sound, ¢, was given by the constant expression
¢ = /1L.4Fy/po. It is clear that this expression will not be constant if temperature varies since
at a given pressure hotter air is less dense. Including this effect we find the speed of sound is
given by

¢ =20.06v273+T {metres per second)

when T is given in degrees Celsius. Thus the speed of sound propagation inereases with air tem-
perature. Since wave-fronts bend towards regions of lower speed we can now give a qualitative
explanation of the motorway noise observation as depicted in Figure 2. If the air temperature

T.<T

air manukan

*¥ motorway
5 Manukau harbour

Figure 3: Paths for ray-like propagation of motorway noise in the presence of a vertical gradient
of temperature.

increases with height, the motorway noise is bent downwards and 1 hear sound that is unim-
peeded by trees and other objecis at ground level — hence the traffic sounds close. Conversely,
when the air temperature decreases with height all the motorway noise is bent upwards and [
am able to enjoy my breakfast in a region of sound shadow.

Interestingly, the improved model has allowed us to make a qualitative deseription of the
phenomena but we are unable to make detailed statements because that requires detailed a

T Auckland actually has many harbour bridges
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priori knowledge of the air temperatures. When the air is not still, scattering of the sound from
turbulence and other inhomogineities causes a futher marked departure from the theory and
renders useless even the qualitative model.

50 the best we can hope for thé model is to employ it in cases where the propagation is over
modest distances and when any air flow is slow enough to avoid turbulences. In those cases, the
model we derived turns out to be remarkably good.

1.4 Boundary Conditions

"To model the sound propagation in rooms and other enclosed spaces where we hope the model
will be valid, we need to include a model for the interaction of the air in the (1pm)3 cube with
the enclosing surfaces.

For rigid walls the interaction is simple since the molecules bounce off the wall their average
velocity into the wall is therefore zero. Thus the time derivative of the average velocity is also
zero which implies, using equation (2), that the component of the gradient of pressure pointing
into the surface is also zero. It is conventional to use the unit vector n at each point on the
surface that is normal® to the surface. The statement that the normal velocity is zero is that
q-n = 0 and the equivalent statement using (2) is that (Vp)-n = 0. Since this equals the
gradient of p in the direction of n we often write the condition at the sarface as

dp

dn

Most surfaces are not completely rigid and vibrate in response to the acoustic pressure
incident upon them. In this case the velocity normal to the surface is not zero, but is related to

the applied pressure by

0 at rigid surfaces.

Zs@ =p at the surface
on

where Z; is the specific acoustic impedance of the surface.

More generally, the relationship between applied pressure and velocity is not local as implied
by the previous equation. For a typical panel construction wall, acoustic pressure applied locally
canuses the entire panel to vibrate and hence generates velocity everywhere on the surface. Thus
a more general boundary contact condition would relate pressure and velocity over the entire
surface.

1.5 The usual model

The combination of the wave equation

197 : .
2y o Zﬁ—ﬁg at all points in space
that describes propagation within the volume, the boundary condition, e.g.
a.
9P _y on the surfaces
on

that gives the behaiviour of the sound field at the surfaces that enclose the volume and the
statement of the initial state of the sound pressure is called an initial boundary-value problem

% e. perpindicular
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and it is usually statements of this form that are solved for particular spatial geometries and
acoustic sources.

The two most important features of this set of equations is that they are linear, i.e., if
two sound pressures satisfy the set of equations then so does their sum, and difference, and any
multiple of them and also that they do not change with time. It is these mathematical properties
that allow us to treat the single frequency solutions to the problem separately — and then sum
the resulting solutions. When we make this simplification we formally write

p(x,1) = p(x) sin(wt)
and now the space part satisfies Helmholtz’ equation®

V2p(x) + Kp(x) = 0.

2 Methods of Solution

Oze of the features of acoustics that make solving this equation a challenge is that the wavelength
at typical frequencies is the smae general size as the objects in the sound field. In the extreme
cases of very long or very short wavelength (compared to object sizes) the solutions may be
found by approximations. When objects are much smaller than the wavelength the sound field
is'virtually unchanged by the presence of the object and a simple solution can be found. When
the wavelength is much smaller than typical objects the sound field can be calculated as in
geometric optics where objects cast sharp shadows. However, the centre of the audible range
from 300 Hz to 3000Hz spans the wavelengths from 1 metre to 10 cm anf this is precisely the
typical size of objects that we put in rooms. Consequently these simplifying assumptions are of
little use and we are left with no option but to solve the equations exactly.

2.1 An Analytic Solution

A simple enclosed system that has an analytic solution is the sound pressure within a narrow
rigid cylinder excited by an oscillating piston at one end. The sound pressure is

sin(wi)

x=I

x=l

Figure 4: Narrow cylinder with a piston at one end

pla, ) = - D) sintur)

11 { Kt ) 4
which can easily be verified by checking that the initial boundary value equationd are satisfied.
The spatial dependence can be seen to be unchanging in time - this is a standing wave and
can be thought of as the sum of two wave-like solutions propagating left and right, respectively.
These solutions are the modes of this system and the special cases where the denomenator sin{k!)

2
*We have used the fact that i%ﬂ = —w” sin(wt) and the relation £ == (w/c)?.
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equals zero are the normal modes of the system. The normal modes are solutions that exist in
the absence of any forcing and correspond to the oscillation of the system after the sources have
been stopped. In this case the normal modes occur at the discrete frequencies

fz$ . wheren =1,2,3,---.

This geometry is a case where the solutions given by the model have been experimentally
verified to great precision. A development of this system is routinely used for measuring the
acoustic impedance of material placed at the closed end.

2.2 Boundary Element Method

The Boundary Integral Methods, like most efficient computational schemes, do not work with the
wave equation or Helmholtz’ equation directly but instead start with a mathematically equivalent
form. Helmholtz’ equation may be stated as a relationship between the sound pressure within
the space and on the surfaces through an application of Green’s theorem and identifying terms
with the solution and the field due to a monopole source. The resulting expression is

psource(x) + ./‘; g_:z(x’)m(x - xl) - p(X,)d’ﬂ(X - xi) dS(XI) = { igg/ﬂ i :JI;SE‘:I:S‘;ZCB

The top line of this expression relates the pressure in a space p(x) to the direct sound from
any SOUrces Peource(X) and the pressure and its normal derivative on the enclosing surfaces §.
The term in the integral hence gives the "scattered sound field” and it is interesting to note
its structure. Note that the normal derivative of pressure on the surface propagates into the
volume as a monopole while the pressure propagates as a dipole.

Once p and %’% are known on the enclosing surface, the sound pressure throughout space can
be calculated. Typically the surface conditions specify only one of these quantities; The Bound-
ary Integral Methods consist of using that information and the second line of the expression,
above, to give a second equation which together are solved for the two functions p and g;i on
the surfaces.

In the case of rigid surfaces, the boundary condition is that gﬁ = () leaving the equation

Paoes(3) = [ D36~ ) 45 () = (1) 2

which must hold at each x on the surface S and can be solved for p(x) on 5. The Boundary
Element Method solves this integral equation by approximating it by an easily solvable matrix
equation. The first step is to discretize the enclosing surface into small areas called elements. A
cross-section through a discretization is shown in Figure 3.

The second step is to approximate the value of p(x) on the surface by simple functions - e.g.
constant over each element. If

p; = constant value of p on element ¢

fi; = constant value of psgurce On element 2

and

K= jS do(x - ) dS()
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th
4—— i boundary element

Figure 5: Discretization of the boundary of the volume

then the integral equation becomnes

(I{ + %I) b p = bf f

which can be solved for p usmg standard techniques built-in to good programming languages.
Finally, once both p and —E are known, p(x) can be calculated at any point in the space.
The following two dlagra,ms show the geometry and some results of calculations of the inser-

tion loss for a motorway barrier.

e em—, “\
. - - ~
. ’ - - "'ﬂ. ,“
e ’ - - ——— ‘s‘ b
’c ’ - - - - S N
' -
"l '/ , ” ———— -~ A . )
K AP e v Cylindrically
e Lemmmm—a Propagating
s - . Wave Fronts
1/ -\
L
’f PR T
‘.
'0 ‘/ .

‘\ Source

Figure 6: Cross-section through noise source (traffic) and sound bartiers

2.3 Variational and Finite Element Methods

The wave equation is a local statement of the dynamics of air — we looked at a tiny volume to
derive the equation. It has yet to cease amazing me that it is mathematically equivalent to a



15.10

Insertion Loss (IL) vs Dimensionless Distance (D)
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Figure 7: Insertion loss for various values of dimensionless distance I} from the source and
dimensionless height of the barrier R. The position of the barrier wall is clearly visible.

completely global statement of the dynamics known as Hamilton’s principle. That equvalent
statement is that the sound pressure develops in a way that minimises the total over time of the
difference between the potential and kinetic energies of the air.

The Finite Element Method achieves the minimisation by first discretizing the volume into
elements and then by approximating p by simple functions on each element — often linear {unc-
tions. The minimum is calculated numerically over the finite number of elements, usually by
solving the associated normal equations.

instantaneous
energies

gpotential energy

A
I
]
1

kinetic energy

Figure 8: Shaded area is the total difference between potential and kinetic energy over time.
Note that when kinetic > potential the area is considered negative. '

10
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o
| - i finite element

Figure 9: Discretization of the volume into elements

2.4 Finite Differences

In Finite Difference approximations the discretization is made by considering the solution value
only at a finite number of points, called nodes, within the volume. The term V2p is approximated

i,i node

| —

Figure 10: Discretization of the volume as nodes

by the finite-difference molecule acting on the grid of values. This leads to a matrix equation

1
®
Pijt+1

1 -4 1

» L LI
PL1,j Pi,j Pit1,j

1
o
Pij-1
Figure 11: Finite difference molecule for Laplacian in two space dimensions.

for the unknown nadal values of p which can be solved giving the sound pressure directly.

11
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3 Conclusions

The wave equation can be derived from simple ideas about the kinetics of the molecules in
air; many of the details of dynamics of individual molecules are irrelevant. The resulting wave
equation predicts that sound pressures will propagate with a constant speed — agreeing with
observation over modest distances in enclosed volumes. Various methods of solution were dis-
cussed, the most widely applicable being the numerical Finite Element and Boundary Element

methods.

4 References
Beranek, Leo L., Acoustics, McGraw-Hill, 1954.

Mandl, F., Statistical Physics, Wiley and Sons, 1981.

12



