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A direct relationship between bending waves and edge

conditions of floating plates

Hyuck Chung and Colin Fox ∗

Abstract

Ocean waves travel deep into ice fields in the polar regions, both affecting the
formation of sea-ice and causing its breakup. Recently, it has been shown that
a relatively simple linear water and bending wave theory can predict the decay
rate of the wave energy travelling through fractured ice sheets and floes at the
geophysically important wave periods of 6 to 15 seconds. That work used simple free-
edge conditions. A possible improvement to the current model is to better represent
the effective connection due to partially frozen cracks that occur in practice. The
Wiener-Hopf technique gives explicit formulae for the velocity potential and surface
deflection, expressed as series expansions over the modes of the elastic plate floating
on water of finite depth, with the coefficients in the expansion given as functions of
four constants. These constants are determined by a system of four linear equations,
represented by a 4-by-4 matrix and a 4-element vector. The elements of the matrix
are given as explicit functions of relationship between edge conditions. General
connections between ice sheets may be interpreted as a vertical and a rotational
spring providing transition conditions for the shear force and the bending moment.
The reflection and the transmission of waves can then be simply calculated as direct
functions of the connection conditions. Conversely, reflected and transmitted waves
allow complete characterization of the effective connection conditions at a material
discontinuity.

1 Introduction

We consider two boundary value problems: a semi-infinite plate occupying one half of the
water surface and two semi-infinite plates occupying the entire surface. The single-plate
problem is actually a limiting case of the two-plate problem, and can be treated in the
same way as the two-plate problem. We derive the analytic solution of the two-plate prob-
lem using the Wiener-Hopf (W-H) technique. The method of solution incorporates the
boundary conditions at the edges of the plates into the solution formulae solely through a
4 × 4 matrix and 4-element column vector, which represents the connection between the
two plates. The conditions that describe the connection are represented by two parame-
ters. These parameters appear explicitly in the matrix defining boundary conditions, and
are effectively spring constants in the connection.

In recent years, there has been significant progress made in the field of analytic or
semi-analytic solutions of the fluid-loaded elastic plate problems. In particular, several
researchers ([1, 6, 19]) have used the W-H technique to solve fluid-loaded plate problems
as models for sea-ice dynamics. The W-H technique was first applied to a problem of
ocean waves in sea-ice by Evans and Davies [5], though they did not give their solution in
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a form suitable for numerical computation. Although the researches in Russia may not
be well known outside Russia, the papers by Goldstein and Marchenko, and Tkacheva
[10, 13, 17] presented significant advances.

The formation and break-up of ice sheets in the polar regions has significant effect on
marine life and ocean current dynamics. It has been observed by Squire et. al. [16] that
ocean waves are one of the main causes of break-up of the ice sheets. Therefore, it has
become important to know how much wave energy is how far into the ice fields. Kohout
and Meylan [11] give a unique study, comparing field measurements to the theoretical
results from the linear hydro-elasticity theory. Their conclusion is encouraging in the
sense that linear theory has its place in describing actual sea-ice dynamics. It gives
a good motivation for constructing a better model for waves in ice sheets using linear
hydro-elasticity. We focus on the interaction between two ice sheets. Kohout and Meylan
used free-edge conditions in their study. It is uncertain how to describe the physical
conditions between two ice sheet because they are naturally as complex as the ice itself.
In this paper we characterize the full range of transition conditions that can occur in
a linear theory and find that only four physical parameters including the characteristic
lengths are needed.

It has been previously established that the velocity potential of the water can be
expressed by series expansions over the modes of the plate-covered water. When the
coordinates are defined as shown in figure 1, the solutions in y < 0 and y > 0 are

φ (x, y, z, t) =
∞
∑

n=−2

anei(kx+κ′
n
y+ωt) cosh κn (z + H) , for y < 0

φ (x, y, z, t) =
∞
∑

n=−2

bnei(kx+µ′
n
y+ωt) cosh µn (z + H) , for y > 0

where κn, κ′
n, µn and µ′

n are the wavenumbers for each mode and ω is the radial frequency
of the incident wave. In this paper the coefficients an and bn will be determined by a rather
lengthy process using the W-H technique. In section 4 explicit formulae for an and bn will
be given as functions of four constants, (d0, d1, d2, d3). These constants are computed by
solving a linear equation of form

Tσ1,σ2









d0

d1

d2

d3









= v

where Tσ1,σ2
is a 4 × 4 matrix and v is a 4-element column vector. Connection between

the ice sheets is equivalent to linking them with a vertical and a rotational spring with
spring constants σ1 and σ2, which appear explicitly in Tσ1,σ2

. Therefore, one does not
have to go through the W-H solution procedure to compute the solution for each specific
edge condition or connection between them. Instead, the simplified procedure given in
section 5 provides a simple and exact relationship.

2 Formulation of the boundary value problems

2.1 Governing equations

We first formulate the governing equations in physical dimensions, then convert them to a
non-dimensional form using the characteristic length and time in the following subsection.
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Figure 1: Schematic drawings of a plane wave obliquely incident at the water-plate and
plate-plate transition. The origin of the coordinate system is placed at the surface tran-
sition.

The geometry of the two problems are shown in figure 1. The motion of the fluid is
parameterized by a velocity potential, φ̄, which satisfies Laplace’s equation with a solid
bottom condition,

∇2
x̄,ȳ,z̄φ̄ (x̄, ȳ, z̄) = 0, −∞ < x̄, ȳ < ∞,−H̄ < z̄ < 0 (1)

φ̄z̄

∣

∣

z̄=−H̄
= 0, −∞ < x̄, ȳ < ∞. (2)

Here ∇2
x̄,ȳ,z̄ denotes the Laplacian in the three space dimensions while φ̄z̄ denotes the

partial derivative of φ̄ in the z̄ direction. We will use analogous subscript notation for
other partial derivatives. In the ice-covered region, ȳ > 0, the vertical displacement
η̄ (x̄, ȳ) of the ice sheet satisfies the Kirchhoff thin-plate equation

D∇4
x̄,ȳη̄ + m̄ (η̄t̄t̄ + g) = p̄ for −∞ < x̄ < ∞, 0 < ȳ < ∞ (3)

and is related to the potential by the linearized Bernoulli equation

ρφ̄t̄ + ρgη̄ + p̄ = 0, (4)

where D is the flexural rigidity of the ice sheet, m̄ (= ρih) is mass per unit surface area
of the ice sheet (ρi is the density of sea ice), p̄ is the pressure acting at the lower surface
of the ice sheet, and ρ is density of water. Here ∇4

x̄,ȳ is the biharmonic operator in the
plane of the ice sheet. The flexural rigidity D is usually related to the effective Young’s
modulus E and Poisson’s ratio ν by the relation D = Eh3/12 (1 − ν2). The assumption
that no cavitation occurs between the ice sheet and water, gives the kinematic condition
that

φ̄z̄

∣

∣

z̄=0
= η̄t̄ for ȳ > 0 (5)

while the velocity potential in the free-surface region satisfies

φ̄t̄t̄

∣

∣

z̄=0
+ g φ̄z̄

∣

∣

z̄=0
= 0 for ȳ < 0. (6)

We can formulate the two plate case simply by replacing the free surface condition (6)
with a plate equation, giving the two plate equations

D1∇4
x̄,ȳη̄ + m̄1 (η̄t̄t̄ + g) = p̄ for −∞ < x̄ < ∞,−∞ < ȳ < 0,

D2∇4
x̄,ȳη̄ + m̄2 (η̄t̄t̄ + g) = p̄ for −∞ < x̄ < ∞, 0 < ȳ < ∞.

The subscript 1 and 2 will indicate the parameters for the plate in ȳ < 0 and ȳ > 0,
respectively.
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2.2 Non-dimensional formulation

The system of equations introduced in subsection 2.1 can be non-dimensionalized by
scaling variables using the characteristic length l and time τ defined by

l = 4

√

D

ρg
, τ =

√

l

g
.

The dimensionless quantities (without over-bar) are

(x, y, z) = (x̄, ȳ, z̄) /l, t = t̄/τ, ω = ω̄τ,
η = η̄/l, φ = φ̄/

(

l
√

gl
)

,
p = p̄/ (ρgl) , m = m̄/ (ρl) .

This scaling is optimal in the sense that it captures significant physical properties of
the response of the system and hence the number of solutions required is reduced to a
minimal, canonical, set (see [7]).

The equations for the non-dimensional velocity potential become, from equations from
(1) to (6),

(

∇4
x,y + m

∂2

∂t2
+ 1

)

φz + φtt = 0 for z = 0, y > 0,

∇2
x,y,zφ = 0 for −∞ < x, y < ∞,−H < z < 0,
φz = 0 for z = −H,

φtt = −φz for z = 0, y < 0.

We use the same non-dimensionalization procedure for the two-plate problem. The
two plate equations are non-dimensionalized using the characteristic length of the plate
in y > 0, denoted l2, to give

(

l4r∇4
x,y + m1

∂2

∂t2
+ 1

)

φz + φtt = 0 for z = 0, y < 0,
(

∇4
x,y + m2

∂2

∂t2
+ 1

)

φz + φtt = 0 for z = 0, y > 0,

where lr is the ratio of the two characteristic lengths, lr = l1/l2. The non-dimensional
mass densities are defined as

m1 =
m̄1

ρl2
, m2 =

m̄2

ρl2
.

Notice that the equation for y < 0 reduces to that for the water surface, when l1 = 0.
Hence, we will only deal with the two-plate problem in the following sections.

2.3 Boundary conditions

A plate floating without any constraints at the boundary satisfies the two natural bound-
ary conditions (see Shames and Dym [15]),

φzyy + νφzxx = 0
∇2

x,yφzy + (1 − ν) φzyxx = 0

}

for y = 0+, z = 0.

However additional conditions are required when the two plates are mechanically con-
nected. The most general conditions can be derived from the variational calculus shown
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in section 6.4 of [15] and are necessarily a linear relationship between the following deriva-
tives across the boundary:

B1η|y=0− = l4r

{

ηyyy|y=0− − k2 (2 − ν) ηy|y=0−

}

,

B1η|y=0+ = ηyyy|y=0+ − k2 (2 − ν) ηy|y=0+ ,

which are shear forces,

B2η|y=0− = l4r

(

ηyy|y=0− − k2ν η|y=0−

)

,

B2η|y=0+ = ηyy|y=0+ − k2ν η|y=0+ ,

which are bending moments, the displacement η|y=0±, and the slope ηy|y=0±. B1 and B2

denote the boundary operators that give shear force and bending moment at the edge of
the plate, respectively.

3 Method of solution

As depicted in figure 1, we assume that the plates are excited by a single frequency plane
wave with x and t dependence given by exp i (kx + ωt). The wave number k is determined
by the travelling wave number in the region y < 0 denoted κ0 and the incident angle, θ,
i.e., k = κ0 sin θ. Therefore the velocity potential φ (x, y, z, t) can be rewritten using a
complex valued function φ (y, z) as

φ (x, y, z, t) = Re
[

φ (y, z) ei(kx+ωt)
]

.

The complex potential φ (y, z) then satisfies Helmholtz equation

(

∂2

∂y2
+

∂2

∂z2
− k2

)

φ = 0 for −∞ < y < ∞,−H < z < 0 (7)

with the boundary condition at the bottom of the sea

φz|z=−H = 0. (8)

The linearity of the system enables the rest of the equations to be rewritten without the
x and t dependence. We then have the following equations at the surface.

(

l4r

(

∂

∂y2
− k2

)2

− m1ω
2 + 1

)

φz = ω2φ for y < 0, (9)

(

(

∂

∂y2
− k2

)2

− m2ω
2 + 1

)

φz = ω2φ for y > 0. (10)

3.1 Modal expansion of the solution

The solution of the system given by (7) and (8) can be found using the method of sepa-
ration of variables. This gives modes of the form

φ (y, z) ∼ e± iαy cosh γ (z + H) (11)
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where γ2 = α2 + k2. We can derive the algebraic equations for the spatial wave numbers
κ and µ by substituting the eigenfunction (11) into (9) and (10). The resulting algebraic
equations

f1 (γ) = l4r γ
4 − m1ω

2 + 1 − ω2

γ tanh γH
= 0 (12)

and

f2 (γ) = γ4 − m2ω
2 + 1 − ω2

γ tanh γH
= 0 (13)

are called the dispersion equations and have an infinite number of roots in the complex
plane. Equation (12) has two real, four complex and infinite number of pure imaginary
roots, which we denote ±κ0, {±κ−1,±κ−2} and ±κn, n = 1, 2, ..., respectively. Equation
(13) also has two real, four complex and infinite number of pure imaginary roots, which
we denote ±µ0, {±µ−1,±µ−2} and ±µn, n = 1, 2, .... Note that µ−1 = −µ∗

−2. Note
that (12) becomes the water-surface dispersion equation when l4r = 0, in which case there
are no complex roots. Numerical computation of the roots of the dispersion equations is
detailed in [8].

The complete solution of the boundary problem is then expressed by a sum over all
the permissible roots (see [12] for a rigorous proof). The velocity potential for y < 0 with
free surface is

φ (y, z) =
(

Ieiκ′
0
y + Re− iκ′

0
y
) cosh κ0 (z + H)

κ0 sinh κ0H
+

∞
∑

n=1

ane− i κ′
n
y cosh κn (z + H)

κn sinh κnH

and with an ice sheet is

φ (y, z) =
(

Iei κ′
0
y + Re− i κ′

0
y
) cosh κ0 (z + H)

κ0 sinh κ0H
+

∞
∑

n=−2

n6=0

ane− i κ′
n
y cosh κn (z + H)

κn sinh κnH
,

while the velocity potential for y > 0 with the ice sheet is

φ (y, z) = Teiµ′
0
y cosh µ0 (z + H)

µ0 sinh µ0H
+

∞
∑

n=−2

n6=0

bneiµ′
n
y cosh µn (z + H)

µ0 sinh µ0H
.

The surface velocities are derived by the z-derivatives of the above potentials. We here
give only the plate-covered surface velocities

φz (y, 0) =
(

Iei κ′
0
y + Re− iκ′

0
y
)

+

∞
∑

n=−2

n6=0

ane− iκ′
n
y, for y < 0

φz (y, 0) = Teiµ′
0
y +

∞
∑

n=−2

n6=0

bnei µ′
n
y, for y > 0.

The transmission, reflection, and incident amplitudes denoted by T , R and I are quantities
that we use to visualize the waves in the sea-ice. These quantities are the far-field wave
amplitudes that can be measured in the field. The wavenumbers κ′

n and µ′
n are wave

numbers projected onto the y axis and related to the roots of the dispersion equations by

κ′

n =
√

κ2
n − k2, µ′

n =
√

µ2
n − k2.

The branch of the square root has been chosen so that the primed variables equal the
unprimed roots when k = 0.
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3.2 Derivation of the solution using the W-H technique

This section briefly describes the derivation of the solution of the system of equations
given in the previous section using the W-H technique. We apply the Fourier transform
to the differential equations of φ in the respective domains y < 0 and y > 0, defined as

Φ+ (α, z) =

∫

∞

0

φ (y, z) eiαydy, Φ− (α, z) =

∫ 0

−∞

φ (y, z) ei αydy. (14)

We also denote the same transforms of φz (y, 0) in y > 0 and y < 0 by Φ′
+ (α) and Φ′

− (α),
respectively. From the transforms of Laplace’s equation and the condition at z = −H ,
we have

Φ± (α, z) = Φ± (α, 0)
cosh γ (z + H)

cosh γH
± g (α, z) (15)

where γ =
√

α2 + k2 and g (α, z) is a regular function determined by the contribution from
the boundary, {φy (0, z) − i αφ (0, z)}. Note that Re γ > 0 when Re α > 0 and Re γ < 0
when Re α < 0. Also the functions Φ+ (α, z) and Φ− (α, z) are regular in Im α > 0 and
Im α < 0, respectively. We have, by differentiating both sides of (15) with respect to z at
z = 0,

Φ′

± (α) = Φ± (α, 0) γ tanh γH ± gz (α, 0) (16)

where Φ′
± (α) is the z-derivative of Φ± (α, z) at z = 0.

Applying the same integral transforms (14) to the plate equations for y < 0 and y > 0
and using (16), we obtain

f1 (γ) Φ′

− (α) + C1 (α) = 0, (17)

f2 (γ) Φ′

+ (α) + C2 (α) = 0, (18)

where

C1 (α) = −ρω2gz (α, 0)

γ tanh γH
+ P1 (α) , C2 (α) =

ρω2gz (α, 0)

γ tanh γH
− P2 (α) .

and Pj, j = 1, 2, are second order polynomials of α. Notice that f1 and f2 are the
dispersion equations (12) and (13).

The functions Φ′
− (α), and Φ′

+ (α) are defined for Im α < 0 and Im α > 0 respectively,
however they can be extended to the whole plane using (17) and (18) as definitions for
analytic continuation. Equations (17) and (18) show that the singularities of Φ′

− and Φ′
+

are determined by the positions of the zeros of f1 and f2, since gz (α, 0) is bounded and
zeros of γ tanh γH are not singularities of Φ′

±. The two functions Φ′
− (α) and Φ′

+ (α) do
not share domains of regularity, because they are separated by the real axis. We are able
to manipulate the regions of regularity by including or removing one singular part of the
functions. Here, we remove a singular part corresponding to −κ′

0, which gives rise to the
incident wave, from Φ′

− (α) and from Φ′
+ (α). The modified functions denoted by Ψ′

± (α)
satisfy

f1 (γ) Ψ′

− (α) + C1 (α) = 0, (19)

f2 (γ) Ψ′

+ (α) − Ĩf2 (κ′
0)

α + κ′
0

+ C2 (α) = 0, (20)

where Ĩ is the amplitude associated with κ′
0. The modified functions Ψ′

− (α) and Ψ′
+ (α)

do have a common strip region of analyticity on the real axis with the indentations over
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−κ′
0, −µ′

0 and under κ′
0, µ′

0 as shown in figure 8. Let D+ and D− denote the upper and
lower half of the α-plane that are sharing the indented region on the real axis described
above and shown in figure 8. Then, we may now add both sides of (19) and (20) to derive
a typical W-H equation defined in D+ ∩ D−,

f1 (γ) Ψ′

− (α) + f2 (γ) Ψ′

+ (α) − Ĩf2 (κ′
0)

α + κ′
0

+ C (α) = 0 (21)

where C = C1 + C2.
The standard method of solution of the W-H equation requires factorization of the

two dispersion functions. Weierstrass’ factor theorem and the symmetry of the positions
of the roots in S1 and S2, sets of roots of f1 and f2 in D+, respectively, give

f2

f1
= K (α)K (−α) , K (α) =

(

∏

q′∈S1

q

q′ + α

)(

∏

q′∈S2

q′ + α

q

)

.

Note that K (α) is regular in the upper half plane and on the real axis except at −κ′
0 and

−µ′
0 and the infinite products converge in the order of q−5 as |q| becomes large. Then

(21) can be rewritten as

K (α)
[

f (γ) Ψ′

+ (α) + C
]

−
(

K (α) − 1

K (κ′
0)

)

Ĩf2 (κ0)

α + κ′
0

= − 1

K (−α)

[

f (γ) Ψ′

− (α) − C
]

−
(

1

K (−α)
− 1

K (κ′
0)

)

Ĩf2 (κ0)

α + κ′
0

(22)

where f (γ) = f2 (γ) − f1 (γ) . The splitting is actually performed on f1γ sinh γH and
f2γ sinh γH , which are not zero at γ = 0.

The left hand side of (22) is regular in D+ and the right hand side is regular in D−.
Notice that a function is added to both sides of the equation to make the right hand side
of the equation regular in D−. The left hand side of (22) is o (α4) as |α| → ∞ in D+,
since Ψ′

+ → 0 and K (α) = O (1) as |α| → ∞ in D+. The right hand side of (22) has the
same analytic properties in D−. Then Liouville’s theorem (see section 2.4 of [2]) tells us
that there exists a function that we denote J (α), equal to both sides in (22) in the whole
plane, that is a polynomial of degree three

J (α) = d0 + d1α + d2α
2 + d3α

3.

Application of Liouville’s theorem is the key reduction in the W-H solution that allows
writing coefficients {an} and {bn} in terms of the four coefficients defining J (α).

Equating (22) for Ψ′ = Ψ′
− + Ψ′

+ gives

Ψ′ (α) =
−F (α)

K (α) f1 (γ)
or − K (−α) F (α)

f2 (γ)

where

F (α) = J (α) − Ĩf2 (γ)

(α + κ′
0) K (κ′

0)
.

Notice that procedure we used in forming (22) eliminates the need of calculating C. We
are now able to calculate solutions using the inverse Fourier transform

φz (y, 0) =
1

2π

∫

∞

−∞

Φ′ (α) e− iαy dα.
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Figure 2: Schematics of the contour integration paths of the inverse Fourier transform
and the positions (not to scale) of the corresponding roots in the α-plane. µ′

0 is not shown
since it is not a singularity of the integrand. The domains D± have an overlapping region
of analyticity consisting of an open region about the indented integral path. S1 and S2

denote the sets of the singularities in D+ and D−, respectively.

Solutions for y < 0 are evaluated by closing the contour of integration in D+ as
depicted in figure 8. After putting back the incident wave, we have

φz (y, 0) = i Ĩei κ′
0
y −

∑

q∈S1

i F (q′) qR1 (q)

q′K (q′)
e− i q′y, (23)

where the residue, R1 (q), of [f1 (γ)]−1 at γ = q is given by

R1 (q) =

(

df1 (γ)

dγ

∣

∣

∣

∣

γ=q

)−1

=
ω2q

(5l4r q
4 + b1) ω2 + H

(

(l4r q
5 + b1q)

2 − ω4
) . (24)

It is important computationally that the above formula does not have the oscillating
function tanh qH , which has been removed using the dispersion equation. As a result,
|R1 (q)| decays monotonically and rapidly as |q| increases. We also used b1 = −m1ω

2 + 1
and f1 (q) = 0 to simplify the formula. The velocity potential φ (y, z) is explicitly, from
(15) and (16),

φ (y, z) =
i Ĩ cosh κ0 (z + H)

κ0 sinh κ0H
ei κ′

0
y −

∑

q′∈S1

i F (q′)R1 (q) cosh q (z + H)

q′K (q′) sinh qH
e− i q′y.

This formula gives coefficients {an} explicitly. Notice that i Ĩ = I.
For y > 0, we derive φz (y, 0) and φ (y, z) by closing the contour of integration in D−

as depicted in figure 8,

φz (y, 0) = −
∑

q′∈S2

i K (q′) F (−q′) qR2 (q)

q′
e− i q′y, (25)

φ (y, z) = −
∑

q′∈S2

i K (q′) F (−q′)R2 (q) cosh q (z + H)

q′ sinh qH
e− i q′y,
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where R2 is a residue of [f2 (γ)]−1 and its formula can be obtained by replacing the
subscript 1 with 2 and lr with 1 in (24). Notice that the coefficients of φz decay as O (q−6)
as |q| becomes large, because Rj ∼ O (q−9), j = 1, 2. Thus the displacement is bounded
up to the fourth y-derivatives. The coefficients of φ, have an extra 1/q′ tanh q′H ∼ O (q4).
Hence the coefficients decay as O (q−2) as |q| becomes large. Therefore, φ is bounded
everywhere including at y = 0.
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Figure 3: The reflection coefficient as a function of the incident angle (in degrees) and
the non-dimensional radial frequency ω (log-scale) when lr = 1 and H = 2π.

Figure 3 shows an example of computation of the reflection coefficient as a function
of frequency and incident angle for two sheets of equal thickness when the edges are free
of constraints. Similar figures have been shown in several other papers introduced in
section 1. Here, the figure shows that there are three regions of distinct behaviour of the
reflection. At low-frequency (normalized frequency ω < 0.7) there is no wave reflected,
i.e., R ≃ 0. For high-frequency, ω > 4, and shallow incident angle, θ < 30◦, there is total
reflection, i.e., R ≃ 1. At mid-frequencies around unit normalized frequency or at steep
incident angles, there is partial reflection.

4 Connection between the ice sheets

Figure 4: The rotational and the vertical springs connecting the two ice sheets.

In reality, the edges of the ice sheets may not be freely moving. Therefore the deriva-
tives given in subsection 2.3 must satisfy the natural transition conditions for the shear
force and the bending moment. Furthermore, the bending moment at the transition is de-
termined by a rotational constraint due to the difference in the gradient at the boundary,
and the shear force is determined by the vertical constraint due to the difference in the
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vertical displacement. These constraints may be interpreted as the result of two springs,
one in each of the vertical and the rotational directions as shown in figure 4. Then the
displacement and the gradient are coupled with the shear force and the bending moment
by the following equations.

σ1

(

η|y=0− − η|y=0+

)

= ± B1η|y=0± ,

σ2

(

ηy|y=0− − ηy|y=0+

)

= ± B2η|y=0± ,
(26)

where σ1 and σ2 are the vertical and the rotational spring constants, respectively. In
addition the following continuity conditions hold

B1 η|y=0− = B1 η|y=0+ , B2 η|y=0− = B2 η|y=0+ . (27)

Using (5), (23), and (25), the complex displacement η may be written as a linear sum
over the coefficients {di} defining J (α). That sum is

η (y) =























c−4 (y) +

3
∑

i=0

dic
−

i (y) , for y < 0

c+
4 (y) +

3
∑

i=0

dic
+
i (y) , for y > 0

(28)

where functions c±i (y), i = 0, 1, 2, 3, have been explicitly determined and do not depend
on the boundary conditions but do depend on characteristic length. For example, c+

0 is

c+
0 (y) = − 1

ω

∑

q′∈S2

K (q′) qR2 (q)

q′
e− i q′y.

The boundary conditions can then be expressed as algebraic equations for the column
vector d = (d0, d1, d2, d3). On substituting (28) into the boundary operators in section
2.3, the boundary values take the form

η|y=0± = A±

1 · d + B±

1 , ηy|y=0± = A±

2 · d + B±

2 ,

B1ηy|y=0± = A±

3 · d + B±

3 , B2ηy|y=0± = A±

4 · d + B±

4 ,

where A±

i , B±

i , i = 1, 2, 3, 4 are row vectors and scalar values, respectively.
The boundary conditions in (26) and (27), which are linear equations with respect to

η, give the matrix equation
Tσ1,σ2

d = v, (29)

where Tσ1,σ2
is the 4 × 4 matrix

Tσ1,σ2
=









σ1

(

A−

1 −A+
1

)

−A+
3

σ2

(

A−

2 −A+
2

)

−A+
4

A−

3 −A+
3

A−

4 −A+
4









(30)

and v the 4-element column vector

v =









−B−

1 + B+
1 − B+

3

−B−

2 + B+
2 − B+

4

−B−

3 + B+
3

−B−

4 + B+
4









.
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Figure 5: The singular values of the transition matrix against the frequency for various
σ1 and σ2. The ω-axis is in log-scale. The water depth is 2π, the incident angle is zero
and lr = 1.

ω = 0.5

σ1 σ2

R
efl

ec
ti
on

co
effi

ci
en

t

ω = 1.0

σ1 σ2

R
efl

ec
ti
on

co
effi

ci
en

t

ω = 2.0

σ1 σ2

R
efl

ec
ti
on

co
effi

ci
en

t

ω = 5.0

σ1 σ2

R
efl

ec
ti
on

co
effi

ci
en

t

0.01

1

100

0.01

1

100

0.01

1

100

0.01

1

100

0.01

1

100

0.01

1

100

0.01

1

100

0.01

1

100

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 6: Reflection coefficient as a function of the spring constants for frequency ω =
0.5, 1.0, 2.0, 5.0, when the incident angle is zero. The axes σ1 and σ2 are in log-scale. The
water depth is 2π and lr = 1.
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5 Computation of solutions

As a result of the derivation in section 4, computation of surface displacement for given
boundary conditions is reduced to forming and solving (29) then evaluating (28). Given
the ratio of the characteristic lengths lr, which determines the roots of the dispersion
equations, the elements of Tσ1,σ2

are completely determined by σ1 and σ2 as shown in
(30). Therefore, apart from the minor numerical computation of inverting a 4× 4 matrix
in (29), the displacement (28) is directly determined by the parameters (σ1, σ2). Therefore
(28) can be rewritten to emphasize this direct relationship in the following form:

η (y; σ1, σ2) = c±4 (y) +
(

T−1
σ1,σ2

v
)

·









c±0 (y)
c±1 (y)
c±2 (y)
c±3 (y)









,

where · denotes inner product.
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Figure 7: Reflection coefficient as a function of normalized frequency ω and incident angle
θ, for various combinations of the spring constants. The axes ω is in log-scale. The water
depth is 2π and lr = 1.

Figure 5 shows the four singular values of Tσ1,σ2
as a function of ω for three choices

of σ1 and σ2. The singular values stay virtually unchanged for ω < 0.7 regardless of the
values of the spring constants, that is, the crack is invisible to the waves. We note that
this low-frequency regime is unchanged from the case of free-edge conditions shown in
figure 3. When the connection is loose, σ1 = σ2 = 0.01, there are only two non-zero
singular values. The system is nearly reduced to two identical semi-infinite ice sheets
with free-edge conditions. In the other extreme when σ1 and σ2 are large, all four singular
values are close to 1 and change little over the frequency range. In this case the ice sheets
are acting almost as one piece, thus there is little reflection of waves.

Figure 6 shows the reflection coefficient as a function of the spring constants when
lr = 1 and θ = 0. It shows again that varying transitions conditions makes little difference
to the wave propagation in the low frequency range. Both the vertical and the rotational
springs are influential to the reflection of the waves at higher frequencies. When both
σ1 and σ2 are small or large, both springs affect the reflection coefficient equally at all
frequencies. However, in an intermediate range the vertical spring constant σ1 induces
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more rapid variation to the reflection coefficient than σ2 does. In particular, the reflection
coefficient changes rapidly near σ1 = 1 at ω = 1, which may be be useful in determining
σ1 and σ2 from field measurements of the reflection coefficient.
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Figure 8: Reflection coefficient as a function of normalized frequency and incident angle
with different combinations of the spring constants from those in figure 7.

Figures 7 and 8 show the reflection coefficient as a function of normalized frequency
and incident angle. When σ1 = σ2 = 0.01 characterizing loose connection in figure 7, the
reflection coefficient shows slight change from the free-edge case in figure 3. The sharp
dip shown in figure 3 disappears as the connection at the crack becomes stronger. This
dip feature has been observed in other papers (see [6, 3, 19]) for open crack cases. The
reflection coefficient changes its character as the connection changes from one extreme to
the other. Both figures 7 and 8 show that the rigidness of the bending and the vertical
connection at the crack acts in a completely different manner. The reflection coefficient
maintains its feature under varying bending connection rigidity, but changes completely
as displacement connection rigidity varies. All figures show that the ice sheets act as one
piece at low-frequencies regardless of the connection conditions or the incident angles.

A further study is required to find a relationship between physical composition of
ice cracks and (σ1, σ2). However, it is possible to speculate what the values of (σ1, σ2)
may mean in reality. For example, when σ1 is small and σ2 is large in figure 7, the ice
sheets may be squeezed tightly and not be able to bend from each other but able to slide
at the crack. The other extreme may be that the crack is partly re-frozen and is able
to bend but unable to slide, corresponding to σ1 is large and σ2 is small. Figures 6, 7
and 8 indicate that the amount of slippage at the crack, which affects the displacement
connection rigidity (σ1), may need more attention than rotational rigidity (σ2).

6 Discussion

The W-H technique gives an analytic solution, which we can use to derive the direct
relationship between the edge boundary conditions and the wave trnasmission/reflection
across a crack. The influence of the varying connection rigidity on the wave propagation
is made clear by the solution. It suggests that the parameters σ1 and σ2 are sensible tools
to describe the crack conditions. The reduction of the solution procedure to the matrix
Tσ1,σ2

enables us to study the wave propagation qualitatively without computing the
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whole solution, rather we need only look into the matrix. One example of such analysis
is to focus on the singular values of Tσ1,σ2

.
The reduction made possible by Liouville’s theorem rests, ultimately, on conservation

of energy at the interface between the two ice sheets (or at the edge of an ice sheet
in the single-plate case). That connection was made explicit in earlier applications of
the W-H technique where the order of transforms for |α| → ∞ (see section 3.2) were
determined by the singularity possible at y = 0 that conserves energy (see e.g. [5]). (We
have avoided this complication by treating the case of finite depth and using the location
of the isolated roots of the dispersion equations.) Therefore the reduction of an infinite
set of coefficients to a finite set achieved by applying Liouville’s theorem is applicable at
each of many interfaces when the wave propagates across multiple cracks. We found this
observation useful in understanding and simplifying the solutions derived by Tkacheva [18]
for propagating across finite interfaces. The reduction also provides a route to generalizing
these solutions to more complex geometries. In principle, the explicit reduction given
here provides a useful method for giving an exact finite dimensional representation of
wave propagation problems in complex composite ice covers, where all junctions conserve
energy. This is an intriguing advance over finite numerical discretization methods that
necessarily introduce approximations.
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