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Abstract–The propagation of ocean waves in the marginal
ice zone (MIZ) is investigated with the aim of determining
whether the loading and scattering of waves by ice floes
is significant. Measurements made using instrumented ice
floes in the MIZ north of the Ross Sea, Antarctica, during
June 1998, are used to determine the frequency-wavelength
relationship for propagating ocean waves in that region.
This measured dispersion equation is related to the effec-
tive large-scale properties of the MIZ that occur in models
for wave propagation and scattering. We present the mea-
sured wave speeds to enable estimation of the parameters
in these models.
Keywords–Wave speed, dispersion equation, marginal ice

zone, sea ice.

INTRODUCTION

The marginal ice zone (MIZ) around Antarctica is that
region of broken floes and pack ice surrounding the con-
tinent during winter and spring in which the ocean wave
behaviour is distinctly modified from that in the open sea.
The striking feature of the surface and waves on enter-
ing the MIZ is that the average floe size increases as the
wave field becomes smoother than the open sea. This si-
multaneous lengthening of the dominant wave length and
lengthening of the mean floe size away from the open sea
is evidence of the feedback nature of the wave-ice inter-
action in the MIZ. That interaction involves the bending
of floes by ocean waves, with breaking resulting particu-
larly for those wavelengths that lead to large floe flexure,
and the concomitant scattering of wave energy. Loss of
wave energy also occurs through mechanisms such as wave
sloshing around floes and collisions between floes. Thus
the wave field modifies the floe-size distribution while the
presence of floes simultaneously modifies the wave field.
This paper focuses on the part of the interaction that

involves the scattering of surface ocean waves by floes
within the MIZ and in particular establishes a field mea-
surement of the dispersion relation — being the relationship
between frequency and wavenumber — for surface-gravity
waves propagating within the Antarctic MIZ. This mea-
surement can be then used to calibrate or validate models
for wave scattering in the MIZ which typically produce a
prediction of group speed as a function of frequency.
A number of models for scattering in the MIZ have re-

cently been developed. Over the last few years Dixon and
Squire (2000a) used the well-established theory of random
media to develop an effective medium approach, using the
coherent-potential approximation to derive a dispersion re-
lation for propagation within a plate of ice with random
scattering inclusions. Such models predict the mean-free
path for energy propagation between scatterers, which sets

the boundary between primarily coherent transport to to-
tally diffusive transport. That work is presently being ex-
tended to include the effect of the water to give a model
for scattering in the MIZ (Dixon and Squire 2000b). A few
years earlier, Meylan and Fox (1996) developed a semi-
empirical model using the scattering from a single floe to
give the scattering kernel in a linear Boltzmann equation
describing the propagation and scattering of wave inten-
sity. Steady state solutions were presented by Meylan and
others (1996). Recently Meylan (2000) has improved the
estimate of the scattering kernel by taking into account the
local coherent effects between floes to calculate the mean
intensity scattering for square floes averaged over floe po-
sition and orientation for a given mean floe size and sep-
aration. It is worth noting that both these models result
in a Boltzmann-type transport equation for wave intensity.
Solutions lead to the effective group speed as a function of
frequency in the scattering medium, which is the deriva-
tive of the effective dispersion equation in the composite
medium.

DISPERSION RELATIONS AND WAVE SPEED

Surface ocean waves of small amplitude — or of moderate
amplitudes where cresting does not occur — are made up of
plane propagating waves that have the form (the real part
of)

exp (i (k · x−ωt)) .
Here x and t are the horizontal space and time coordinates,
respectively, while k and ω give the vector wavenumber and
radial frequency of the wave. The wave propagates in the
direction given by the unit vector k/k where k = kkk is the
magnitude of the wavenumber. The wavelength is therefore
λ = 2π/k and the period is T = 2π/ω.
In a given medium there is a functional relation between

period and wavelength, usually stated as the relation be-
tween magnitude of the wavenumber and radial frequency,
called the dispersion relation. Wave propagation in homo-
geneous media has a well-defined dispersion relation, while
the effective dispersion relations for inhomogeneous media
depend on the scale being observed. Our interest here is
in making a measure of the dispersion relation for propa-
gating waves in the Antarctic MIZ and seeing whether it
conforms to one of the simple dispersion relations for a ho-
mogeneous medium or whether the inhomogeneity of the
ice field is important.
When the ice floes have no effect on wave propagation, as

occurs in the long wavelength limit, the dispersion relation
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is just that for the open sea, which is (assuming deep water)

k =
ω2

g
(open water). (1)

At long wavelengths, though not necessarily in the limit,
the surface cover of broken floes affects the wave propaga-
tion because of the added mass at the surface compared
to open water. If the rigidity of the floes or viscous effects
have no role, then the dispersion relation becomes

k =
ω2

g − dshω2 (added mass) (2)

in which ds is the specific density of sea ice (which is close
to 1) and h is the thickness of the ice cover. If the ice cover
is homogeneous, in that all floes have the same thickness,
then the value of h, and hence the dispersion relation, is
well defined. Otherwise, an effective value for h is required,
which typically depends on the scale being observed. When
the frequency is low enough that ω2 ¿ g/ch, then the
added mass dispersion relation reduces to the dispersion
relation for open water, so k ∝ ω2, and we can conclude
that the mass of the floes has no effect on wave propaga-
tion. Above that frequency the added mass increases the
wavenumber and hence reduces the wavelength for a given
frequency, though this effect is small for typical ice thick-
nesses and periods. At the higher frequencies where the
added mass is appreciable, typically the flexural rigidity of
the floes becomes important — for ice floe sizes and thick-
nesses of geophysical interest. Then the dispersion relation
for a homogeneous ice sheet with flexural rigidity L is be-
tween the positive real root k of

Lk5 + ρ
¡
g − dshω2

¢
k − ρω2 = 0 (ice sheet) (3)

and the radial frequency ω. Here ρ is the density of sea
water. It can be shown that the radial frequency ωc =¡
ρg5/L

¢1/8
sets a transition in behaviour of this dispersion

equation. For ω < ωc, k ≈ ω2/g as for open water, while

for ω > ωc, k ≈
¡
ρω2/L

¢1/5
, i.e., k ∝ ω2/5.

The dispersion relation completely characterizes the
propagation of waves and energy in a (linear) medium. For
example the ratio of wavelength over period gives the phase
speed

cp =
ω

k
(phase speed) (4)

which is the speed of propagation of peaks or troughs in
a monochromatic wave. In open water this speed is (us-
ing equation 1) cp (ω) = g/ω, so phase speed is inversely
proportional to frequency. When the phase speed is not
constant with frequency, the waves of different frequency
that make up a wave packet will propagate with differ-
ing phase speeds and the packet will disperse — hence the
name of the relation. For packets with a relatively narrow
bandwidth, the envelope of the wave packet and hence the
energy in the wave packet propagates with the group speed

cg =
dω

dk
(group speed). (5)

Fig. 1. The ship’s radar screen at the time of the measurements.
North is upwards. Wave crests due to waves from bearing 305◦
are visible.

So a wave packet in the open sea propagates with speed
cg (ω) = g/2ω when the central frequency of the packet is
ω, i.e., half the phase speed.
A topic of current research is development of models for

wave propagation in the MIZ that take into account the
inhomogeneous nature of the ice cover that leads to wave
scattering and other phenomena. These models predict the
effective wave speeds, or equivalently, the effective disper-
sion relation. In this paper we present an experimental
measurement of the dispersion equation in the Antarctic
MIZ for comparison to the predictions of the simple mod-
els above, or the more complicated models that include
scattering, etc.

DESCRIPTION OF MEASUREMENTS

Measurements of the wave field in the Antarctic MIZ
were made on 11 June 1998 during cruise NBP 98-3. For
that cruise, research vessel Nathaniel B. Palmer was taken
into the pack ice southwards on longitudes 180◦ to the
Ross Ice Shelf and then northwards on longitudes 175◦E
and 175◦W. The measurements reported here were taken
at position 65◦40’S 174◦56’W, which was inside the pack
ice about 10 km from the open sea.
Figure 1 shows a snapshot of the radar screen taken dur-

ing the measurements. The wave field is quite clearly vis-
ible, and is dominated by long-crested waves propagating
from the open sea. The direction of wave propagation, es-
timated from this picture, is from 305◦. The important
conclusion is that measurements of wave height, or accel-
eration, made at two points in the wave field that are close
enough to experience coherent wave fields will suffice to
measure the dispersion relation.
Two ice floes were instrumented, each with a GPS unit

that recorded the floe’s position each second and accelerom-
eters that measured the vertical and horizontal accelera-
tions each 1/10 of a second. Each floe was roughly oval in
shape, floe 1 being 7 m × 4.4 m and 0.3 m thick, while
floe 2 was 9.0 m × 6.2 m and 0.6 m thick. Figure 2 shows
the instrumentation being deployed on one of the ice floes.
The ship then stood away from the floes (about 10 km)
and the floe data was telemetered to the ship and recorded
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Fig. 2. Deploying the instrumentation on an ice floe from a basket
lowered over the side of the ship.
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Fig. 3. The position of floe 2 with respect to floe 1, in metres east
and metres north, shown for the 3000 seconds of the data that
are analysed.

in digital form. The two floes were separated by a distance
of about 250 m during the recording period (though ap-
proximately 150 m in the direction of propagation), and
hence they experienced different wave motions. Figure 3
shows a trace of the position of floe 2 with respect to floe
1, for the duration of measurements. At the start of the
measurement period, floe 2 was positioned -27 m east and
191 m north relative to floe 1.
We analyze a section of that data recorded between 06:30

and 07:21 GMT, i.e. nearly 50 minutes duration. Figure 4
shows a 500 second section of the record of accelerations,
offset vertically for clarity. The wave structure is clearly
visible in the vertical acceleration. Note that the horizon-
tal accelerations are much smaller than the vertical motion,
but do contain occasional spikes that are probably the re-
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Fig. 4. A typical record of measured accelerations. The upper trace
is vertical acceleration while the lower, smaller amplitude, traces
give the acceleration in perpendicular horizontal directions. The
traces have been offset for clarity so the mean level should be
ignored.

sult of collisions between floes.
The power spectral density (PSD) for vertical acceler-

ation during the 50 minute record is shown in Figure 5.
This estimate was found using Welch’s method (Welch,
1967) by segmenting the record into sections of length 4096
(409.6 seconds), windowing with a Hanning window, tak-
ing Fourier transforms and then averaging the square mag-
nitude of the transforms. Hence the averaged frequency
bins have width 1/409.6 = 0.0024 Hz. The resulting esti-
mate is scaled so that the integral of the square of the sig-
nal equals the integral of the PSD. This estimate achieves
variance reduction by effectively smoothing over frequen-
cies. Note that the wave energy is limited to the frequencies
0.05 < f < 0.15, corresponding to periods between 6.5 and
20 seconds.
The dispersion equation is estimated by measuring the

phase difference between vertical accelerations at the two
floes and using the separation between floes, in the direc-
tion of wave propagation, to obtain the phase speed. This
simple scheme is complicated by the floes moving in the
pack and with respect to each other during the measure-
ment (Figure 3).

ESTIMATING THE DISPERSION RELATION

The estimate of the dispersion equation is made by fitting
the implied transfer function that holds between the verti-
cal acceleration of the two floes. Because the wave field is
dominated by waves propagating in a single direction, the
transfer function at frequency ω is then given by

a (ω) exp (ik (ω)∆x) (6)

where ∆x is the distance between the floes in the direction
of propagation. The term a (ω) is due to the degree of
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Fig. 5. Power spectral density for vertical acceleration of the two
floes. Floe 1: solid line, floe 2: dashed line.

correlation, or equivalently the angular spread, of the wave
field. It would equal 1 for perfectly uni-directional wave
fields, though it is typically less than 1.
We denote the vertical acceleration at floe 1 and 2 by

z1 (t) and z2 (t), respectively, and the Fourier transforms
of these time series by Z1 (ω) and Z2 (ω), respectively. As-
suming the transfer function S (ω) is constant over a band
of frequencies ω ∈ Γ, the transfer function from floe 1 to
floe 2 can be estimated by the generalization of Welch’s
method

S (ω) =

R
Γ Z2Z

∗
1dωR

Γ |Z1|2 dω
. (7)

Note that the denominator in this estimate is the PSD
at floe 1. The integral over frequencies in the numer-
ator cannot be achieved by averaging over segments, as
in Welch’s method, because the transfer function changes
with time as the separation of the two floes changes. In-
stead, we generalize Welch’s method and fit a transfer func-
tion of the form in equation 6 to the sequence of estimates
S (ω) = Z2Z

∗
1/
R
Γ
|Z1|2 dω calculated for each time seg-

ment. If the distance between floes ∆x remained constant,
this fitting procedure would reduce to the estimate in equa-
tion 7. The resulting magnitude of wavenumbers is shown
with dots in Figure 6.
The dispersion relation for open water is also shown

in Figure 6 (dotted line). It is clear that the measured
wavenumber values are consistently larger (shorter wave-
length) than those given by the open water relation, for
frequencies above 0.1 Hz. The best-fit power law is shown
as a dashed line and gives k ∝ ω2.41. This exponent is
significantly different to the exponent 2 in the open water
model, and also does not fit the dispersion relations given
earlier. Given the measured dispersion relation fits the
power 2.41 well, it seems clear that a systematic effect is
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Fig. 6. Measured dispersion relation (dots) along with open water
dispersion relation (dotted line) and best-fit power law (dashed
line).

occurring. Possible causes of this effect is that the bobbing
response of the floes is different and introduces a system-
atic phase effect, or that the directionality of the wave field
causes a drop off in correlation with frequency leading to
a systematic bias in our estimate. However, both these
causes are unlikely since the bobbing frequency is much
greater than the wave frequencies of interest here, while
the coherence effect would introduce noise in the estimates
which is not evident in Figure 6. Another possibility is that
the dispersion relation in the MIZ is significantly affected
by the presence of the pack ice and is different to that in
open water.
The fitted dispersion equation crosses the open-water

dispersion equation close to the frequency f = 0.1 Hz. At
that frequency the phase velocities are equal since, for both
open water and the MIZ, ω/k = 2π × 0.1/0.04 = 16ms−1.
Since the measured wavenumber is slightly smaller than
the open-water wavenumber for f < 0.1, the phase veloc-
ity in the MIZ is slightly greater than the phase velocity in
open water at low frequencies. Conversely, for f > 0.1 the
measured wavenumber is significantly larger than the open-
water wavenumber and hence the actual phase velocity is
substantially less than that in open water. This suggests
that at shorter periods, waves in the MIZ do not behave
like gravity waves and that some other mechanism is more
important in defining the wave velocity.

CONCLUSIONS

We conclude that it is possible to measure the actual
dispersion relation in the Antarctic MIZ using the mo-
tion of two floes — at least under the assumption of a uni-
directional wave field. The spacing between floes can not be
completely determined as it depends on the motion of the
pack ice. However, we used a data set in which the separa-



5

tion between floes in the direction of propagation is close to
one wavelength at the dominant frequency of 0.1Hz. That
spacing provides a good compromise between the greater
coherency with smaller floe spacing as opposed to greater
calculation accuracy at larger spacing. The precise spacing
that is optimal depends on the details of directivity in the
wave field with more coherent wave fields allowing greater
spacing and hence accuracy. However, it seems unlikely
that much more than one wavelength spacing is ever nec-
essary. Note, however, that the method given here may be
generalized to analyze the vertical motion of many floes to
give the directionality of the wave field as well as the disper-
sion relation. That measurement would overcome the diffi-
culties associated with using just two floes. The measured
dispersion relation proved to be significantly different to
the relation for open water. While the added-mass and ice-
sheet models predict dispersion equations with power laws
less than 2, we found that the measured dispersion equa-
tion has a power law with exponent greater than 2. The
possible causes and mechanisms for this measured power
law are certain to provide a focus for future research.
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