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Abstract– We present a method for measuring the char-
acteristic length of sea ice based on fitting to a the recently-
found solution for the flexural response of a floating ice sheet
subject to localized periodic loading. Unlike previous tech-
niques, the method enables localized measurements at single
frequencies of geophysical interest and, since the measure-
ments may be synchronously demodulated, gives excellent
rejection of unwanted measurement signal, e.g. from ocean
swell. The loading mechanism is described and we discuss
how the effective characteristic length may be determined
using a range of localized measurements. The method is
used to detemine the characteristic length of the sea ice in
McMurdo Sound, Antarctica.

INTRODUCTION

The flexure of floating ice is an important process in the
interaction between ocean waves and sea ice (Squire, 1978)
and also in the interaction between slowly moving floating
ice and sloping structures (Sodhi, 1987). The character-
istic length of floating ice is the primary property of the
ice/water system that determines the flexural motion over
the resulting length and time scales (Fox, 2000). In this
paper we present a new method for measuring the effective
characteristic length at the rates and length scales that
occur in flexural responses.
Ice covers are not usually homogeneous but, rather, are

composites of ice of various thicknesses joined by ridges or
refrozen cracks, etc. Often ocean-wave propagation gener-
ates flexure over scales that includes many inhomogeneities.
Hence the mechanical properties, and characteristic length
in particular, are well defined over scales for which the ice
sheet is homogeneous but takes an effective, average, value
over larger scales. Further, the effective Young’s modulus,
and hence characteristic length, appears to vary with the
period of flexure, with existing measurements showing a
three-fold reduction in effective Young’s modulus from the
static value to the value for forcing around 10 Hz (DiMarco
and others, 1993). Our long-term interest is in in situ mea-
surement of the characteristic length for homogeneous ice
sheets as well as determining the effective characteristic
length of actual, inhomogeneous, ice covers where we seek
to quantify the dependence on forcing frequency and prop-
agation scale.
The present evidence, that the effective characteristic

length varies with the forcing frequency (DiMarco and oth-
ers, 1993), is not predicted by modelling the ice sheet as

a thin elastic plate with fixed flexural rigidity and mass
density. Once the frequency dependence of effective char-
acteristic length is measured, we envisage that it will be
related to underlying physical, rate-dependent processes
leading to better understanding of the local deformation
processes that dominate in flexural motion, and improved
models for ice flexure. Similarly, determining the largest
scale over which the assumption of a homogeneous sheet is
valid, i.e, for which a single effective characteristic length is
adequate, will lead to improved models for wave propaga-
tion and scattering in actual fast ice covers. The scale over
which flexural-gravity wave scattering occurs in actual ice
covers is presently unknown. Field measurements of the de-
pendence of effective characteristic length on propagation
distance can be used to calibrate models for the propaga-
tion and scattering of flexural wave energy, and also pro-
vide a way of probing those mechanical features of the ice
sheet that are most important in determining long-range
propagation of ocean-wave energy. In this paper we focus
on the flexural response of an ice sheet using the model
of a spatially-homogeneous thin elastic plate to develop a
method for making an in-situ measurement of the effec-
tive characteristic length holding at a given frequency of
flexure. An example of such a measurement is given.

CHARACTERISTIC LENGTH

When modelling single-frequency wave-ice interaction,
where typical periods are 3 to 30 seconds with wavelengths
of approximately 10 to 1000 metres, a homogeneous ice
sheet may be accurately modelled as a thin elastic plate
(Squire, 1984; Fox and Squire, 1991). The characteristic
length lc, of the system is related to the effective Young’s
modulus E (Kerr and Palmer, 1972) of the plate via

lc =
4

s
D

ρg
, (1)

where ρ is the density of water and

D =
Eh3

12 (1− ν2)
(2)

is the flexural rigidity of a homogeneous sheet of thickness
h with Poisson’s ration ν. The second parameter (other
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than D or lc) defining the thin plate, usually taken to be
the mass per unit surface area, has a minor quantitative
role as inertial effects in floating ice may be neglected at
all rates relevant to flexural motion (Fox, 2000).
Wymann (1950) showed that scaling distance by the

characteristic length removed any physical parameters from
the governing equations for static flexure of a floating ice
sheet and gave the deflection η to a unit point load as

η (r) =
kei (r/lc)

2πρgl2c
(3)

where r is the distance from the point load and kei is a
modified Bessel function. Note that the physical proper-
ties of the ice sheet enter the solution in equation 3 solely
through the characteristic length. It should be noted that
the static response of actual ice exhibits creep behaviour
as well as a flexural response, so strictly equation 3 defines
the quasi-static flexural response, where quasi-static in this
context implies that the motion is slow enough for hydro-
dynamic effects to be negligible but is faster than rates at
which creep is significant. Since the deflection to an arbi-
trary load may be found as a superposition of the solutions
in equation 3, the quasi-static flexural response of a float-
ing ice sheet to a given load is completely determined by
its characteristic length. Consequently, scaling based on
characteristic length is the primary means of relating field
measurements of slow sea-ice flexure with laboratory-scale
tests. In particular, characteristic length is the only func-
tion of the ice thickness, effective Young’s modulus, and
Poisson’s ratio that describes the flexural behaviour and,
as observed by Sodhi and others (1982), should be scaled
to compare ice-interaction tests. They also observed that
calculation of characteristic length from those parameters
contains uncertainty due to the approximate value gener-
ally assumed for Poisson’s ratio, and therefore that direct
measurement of characteristic length is required for accu-
rate test comparisons. It should be noted that the char-
acterictic length determines the flexural response only, i.e.,
where bending of the ice sheet is the dominant physical pro-
cess, and does not describe other possible responses such
as shear or crushing where the deformations have structure
through the thickness of the ice sheet.
One of the methods used to measure characteristic length

is by applying a point load to the ice sheet, measuring the
resulting deflection at the point of load application and
using equation 3 to calculate characteristic length. This
method (Ashton, 1986) is commonly used in test basins
around the world because of its simplicity. However, it is
not possible to use this method directly in the field as a
vertical reference is not available.
Several attempts have been made to extend the quasi-

static technique for field application. Sodhi (1985) mea-
sured surface tilt near a helicopter that landed on, and
hence loaded, the ice sheet, with characteristic length cal-
culated by fitting the derivative of equation 3 to measure-
ments. Sodhi reports that the measurements were subject
to noise from sea swell, but nevertheless made two suc-
cessful measurements. Fox, and others (1996) measured

Fig. 1. Schematic drawing of the mechanism for stationary periodic
loading. A block of ice is cut and lifted up and down.

the pressure at the lower surface of the ice to determine
the vertical deflection of a sea-ice sheet loaded by driving
a heavy vehicle up to the measurement location. They
calculated the (static) characteristic length and from that
the effective Young’s modulus, and reported results consis-
tent with the effective Young’s modulus calculated using
the temperature and salinity profile of cores taken near
the site. Despite that correspondance between the flexu-
ral measurement and the physical-properties approach, it
should be noted that the latter, semi-empirical, relation-
ship does not allow any frequency-dependence or effective
spatial dependence to be measured.

DYNAMIC MEASUREMENT PROCEDURE

As mentioned above, existing measurements indicate
that the effective Young’s modulus, and hence characteris-
tic length, have a lower dynamic than static value (DiMarco
and others, 1993). DiMarco and others used the term dy-
namic to refer to any oscillating motion, but here we take
it mean the more precise statement that inertial and hy-
drodynamic forces are significant, which can be shown to
be the case for periods that are not substantially greater
than the characteristic time, defined later (Fox, 2000). So
the static measurements are not necessarily relevant to the
comparison between observations of responses in which dy-
namic flexure is the dominant process. Previous dynamic
measurements have been based on the relationship between
frequency and the wavelength of the travelling wave, us-
ing relatively high frequency loading provided by a vibrat-
ing helicopter (DiMarco and others, 1993) or moving loads
(Squire and others, 1994). The latter exploits the mini-
mum phase speed that occurs at the wavelength 2π 4

√
3lc

(Doronin and Kheisin, 1977). However, neither of these
mechanisms allow us to examine the spatial characteristics
of characteristic length across the range of frequencies of
interest. Instead we have developed a stationary dynamic
loading device, described next, along with methods for an-
alyzing near-field measurements of the flexure.

MECHANISM FOR LOCAL DYNAMIC LOADING

A localized oscillating loading mechanism, (Figure 1) has
been developed within the New Zealand programme of sea-
ice studies. A block is cut from the ice sheet and a gantry
is placed over it with a two-directional hydraulic ram at-
tached to the block. Using servo control, the block is lifted
out of the sea water and lowered back into the water with
a period and waveform under computer control.
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When the block is floating in the water (down posi-
tion) only the relatively small weight of the gantry and
hydraulics is resting on the ice. However, when the block
is completely out of the water (up position) the weight of
the block also acts as a downward force through the legs of
the gantry. Since inertial forces are small at the periods of
interest (3 to 30 seconds), a block of mass m results in a
periodic forcing of the ice with amplitude mg/2. We have
used a rig of this design on the sea ice in McMurdo Sound,
Antarctica, and results from that field work are presented
later.

DYNAMIC SOLUTION

Extending the static method for measuring characteristic
length to a stationary dynamic method requires the func-
tional form of the response of the ice sheet to the loading.
Because the hole cut in the ice sheet has negligible effect on
the resulting motion of the ice sheet (Dempsey and others,
1995) we can find the solution for the simpler model of an
infinite thin elastic plate floating on a hydrodynamic base.
For that model, the vertical displacement of the ice sheet,
η (x, y, t), with flexural rigidity D, floating on incompress-
ible water of depth H is related to the (upward) pressure
applied on the ice, pa (x, y, t), by the system of differential
equations and boundary conditions (Fox and Squire, 1994)

D∇4x,yη +mηtt + ρgη + ρφt = pa z = 0
ηt = φz z = 0
φz = 0 z = −H

∇2x,y,zφ = 0 −H < z < 0

where φ (x, y, z, t) is the velocity potential in the water, ρ
is the density of water, and m is the mass density of ice
(per unit surface area) of the ice sheet. Time-harmonic
forcing that has unit magnitude and is localized at the ori-
gin is described by setting pa = δ (x, y) exp iωt, with the
displacement of the ice then expressed as Re [η (r) exp iωt].
Here ω is radial frequency and η (r) is the complex displace-
ment as a function of distance from the point of forcing
r =

p
x2 + y2.

The solution to this system was given by Fox and Chung
(1998), which is

η (r) =
1

ρgl2c

i

2

X
q∈Kˆ

qR (q)H
(1)
0 (qr/lc)

where the sum is over the set Kˆ consisting of the zeros of
the dispersion equation

d (k) = Dk4 −mω2 + ρg − ρω2

k tanh kH
(4)

that are positive real or have positive imaginary part. Here
H
(1)
0 is a Hankel function of the first kind, and

R (q) =
ρω2q

ρω2 (5Dq4 + u) +H
³
(Dq5 + uq)2 − ρ2ω4

´ (5)

is the residue of the Fourier transform of η at its pole q,
and we have written u = 1 − mω2 for brevity. The set

Fig. 2. Schematic of the roots of the dispersion equation in Kˆ.

Kˆ is shown (not to scale) in Figure 2. The dispersion
equation always has one positive real zero qT corresponding
to an outward going travelling wave, two complex roots
with positive imaginary part, qD and −q∗D, giving decaying
travelling waves, and a countably infinite number of pure
positive imaginary zeros, qn n = 1, 2, · · · , each giving an
evanescent wave (Fox and Squire, 1994).
By examining the roots of the dispersion equation, it is

possible to show that deep-water solutions depend only on
the non-dimensional frequency ωtc, where tc =

p
lc/g is

the characteristic time (Fox, 2000). Unit non-dimensional
frequency sets the transition between quasi-static solutions
and dynamic solutions. When ω ¿ 1/tc the response is es-
sentially just the static, Wymann solution moving in phase
with the forcing, while when ω À 1/tc energy is transferred
from the loading to the ice sheet and an appreciable out-
ward propagating wave is generated. Maximum coupling
between the load and the ice/water system occurs at close
to unit non-dimensional frequency.

LOCAL MEASUREMENTS

The motion of the ice sheet may be measured using a
variety of sensor types. The vertical displacement of the
ice sheet, if measured, would allow direct comparison with
the functional form of the motion derived from the models
for flexural motion. However, displacement is difficult to
measure directly in the field because of the lack of a sta-
tionary reference. We have previously used measurement
of pressure at the lower surface of the ice (Fox and others,
1996) as a measure of vertical displacement, though that
measurement suffered from low sensitivity and was noise
prone. A number of other measures of the motion are pos-
sible, such as the surface slope (tilt) or curvature (strain),
or the dynamic nature of the response may be utilized by
measuring surface velocity or acceleration.
We now discuss measurements based on acceleration or

strain as a function of frequency, as well as the measure-
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Fig. 3. Magnitude (upper plot) and phase (lower plot) of normalized
vertical acceleration at the point of forcing, as a function of non-
dimensional frequency.

ment of strain at a single frequency used in the experiments
described later.
The displacement at the point of forcing can be written

as (Fox and Chung, 1998)

η (0) =
−1

πρgl2c

X
q∈Kˆ

qR (q) log (q) .

One appealing technique is based on measuring the acceler-
ation close to the point of forcing. This measurement has
the advantage that the loading and measurement equip-
ment may be located at the same place giving the possi-
bility of a self-contained and portable means of measuring
characteristic length. The acceleration close to the load-
ing has the complex amplitude −ω2η (0), which is shown
as a Bode plot in Figure 3 for the two non-dimensional
water depths H/lc = 0.2π (shallow water) and H/lc = 2π
(deep water). Note that the magnitude of the acceleration
is monotonically increasing with frequency and is given by
straight lines on the log-log graph with a change in slope
occurring near unit non-dimensional frequency. Note also
that the magnitude of acceleration is slightly different for
the two water depths, particularly near ωtc = 1. Measure-
ments based on the magnitude of the acceleration require
accurate knowledge of the mass of the block. A more ro-
bust measure would be to use the phase of the acceleration
with respect to the forcing, which is also monotonically in-
creasing with frequency going from zero in the quasi-static
regime through to π/2 at high frequency. For example,
one procedure could be to sweep frequency to locate the
relative phase of 0.9, which is where the shallow-water and
deep-water phases coincide (at about ωtc =0.9), to give a
measure of characteristic time that is independent of the
water depth. The radian frequency ω is then converted to
characteristic length by lc = 0.92g/ω2.
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Fig. 4. Magnitude of the normalized strain for deep water, as a
function of forcing frequency and distance from the forcing.
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Fig. 5. Phase of the strain for deep water, as a function of forcing
frequency and distance from the forcing.

A second possibility is to measure the curvature (or
strain) at the upper surface of the ice near the location
of forcing. For a uniform ice sheet of thickness h, strain
is proportional to the curvature of the ice sheet (Fox and
Squire, 1994) and is

S (r) = −h
2
ηrr (r) (6)

= − ih

4ρgl4c

X
q∈Kˆ

qR (q)
³
q2H

(1)
2 (qr/lc)− q

r
H
(1)
1 (qr/lc)

´
Figures 4 and 5 show the magnitude and phase of the
normalized strain, −ρgl2cηrr (r), as a function of non-
dimensional frequency, ωtc, and non-dimensional distance,
r/lc, from forcing in the case when the water depth is
H/lc = 2π, i.e., deep water. Note that plots of magnitude
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Fig. 6. View of the measurement set up on the sea ice off Cape
Evans, McMurdo Sound, Antarctica, in October 1998. The block
of ice can be seen partially lifted out of the water and the instru-
mentation is in the sledge box to the left.

and phase of strain have reversed distance axes for ease of
viewing. Figure 4 shows that the magnitude of strain in the
near field, r < lc, changes rapidly with r. Because both the
strain gauge and the loading mechanism have finite size, it
is problematic to determine the strain at a point to fit to
the graph of magnitude. If instead the strain gauges are
placed in the region r & lc, where the magnitude of strain
changes little with respect to distance from the forcing,
then by sweeping the frequency and finding the frequency
where the dip in magnitude occurs, the characteristic fre-
quency and hence length may be determined without accu-
rate knowledge of the geometry. A more robust measure,
that does not require accurate knowledge of the magnitude
of forcing, is to use the feature in Figure 5, which shows
that for r & lc the phase of strain has a minimum value at
ω ≈ 0.9 and the frequency of the minimum is an insensitive
function of distance. Hence, robust measurements can be
made in the region r & lc by finding the frequency where
the dip in phase occurs to determine characteristic time
and length.
In our field experiments, we measured the phase of the

strain, with respect to the forcing, at various distances from
the loading for a single frequency of forcing. Then the
characteristic length can be found by fitting the argument
of the strain in equation 6 to the measured phases. This
measurement procedure requires accurate knowledge of the
distances and a computational fitting procedure. However,
as we show in the next section, a good estimate of the
characteristic length may be made this way.

EXPERIMENTAL RESULTS

Figure 6 shows the loading rig deployed in October 1998
on first-year sea ice in McMurdo Sound, Antarctica, with
the hydraulic ram having partially lifted the block out of
the water. The rig stands on legs that form a square with
2 m sides and the square block cut from the sheet had sides
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Fig. 7. The measured phases (circles), best fit phase (solid) giving
lc = 17.7 m (E ≈ 2× 109 Nm−2) and phase using E = 6 × 109
Nm−2 (dotted) for comparison, as a function of distance from
forcing.

of approximately 1.5 m. The ice at this location was close
to 1.75 m thick, but we could not lift the block entirely
out of the water as the hydraulic pump limited the maxi-
mum lift to about 0.4 m at periods around 10 seconds that
we used. The peak force generated was therefore approxi-
mately 8000 N. The water depth was close to 30 m and air
temperature was around -20

◦
C.

Three strain gauges, having length 0.5m, were placed
with centres 7.3 m, 9.3 m and 11.3 m from the centre of the
rig. During operation the strain was digitized and recorded
each 0.5 s, the resolution being 1 bit = 5.4× 10−10 strain,
though noise was about four times this number. The force
applied to the ice was measured using a load cell between
the hydraulic ram and the ice block, also digitized each
0.5 s. Note that 2 Hz is well above the Nyquist frequency
for the signals encountered, and so this modest sampling
rate is sufficient to unambiguously determine the various
waveforms.
The load was cycled with period 9.26 seconds for 500

seconds and we synchronously demodulated the data to
extract the phase of the strain with respect to the forcing,
at the forcing frequency. The measured phases are shown
by circles in Figure 7. The best-fit curve, found by adjust-
ing the characteristic length and using the other measured
parameters, is shown as a solid line and gives the charac-
teristic length of 17.7 m. Since the theoretical response
of the ice sheet does not depend strongly on the ice-sheet
thickness (for a given characteristic length) or water depth,
this estimate of characteristic length was insensitive to the
precise water depth and the ice thickness used, so those
parameters do not need to be measured accurately. Us-
ing the measured ice thickness, we find that the effective
Young’s modulus is close to 2×109 Nm−2. For comparison,
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the phase that would be expected for the effective Young’s
modulus of 6×109 Nm−2 is shown as a dotted line in Fig-
ure 7. That value was chosen as it has previously been
taken as a typical value for the Young’s modulus of the ice
sheet in McMurdo Sound (Squire, 1993). It is clear that
the measured phases (for 9.26 second period motion) are
inconsistent with the latter value, and we also see that the
method described here easily resolves these two values of
Young’s modulus.

SUMMARY AND CONCLUSIONS

A dynamic method has been developed and applied to
estimate the effective characteristic length of a first-year
ice sheet. The dynamic method uses a stationary oscillat-
ing load with measurements of surface strain fitted to the
theoretical solution for a homogeneous thin plate floating
on a hydrodynamic base. Various possible measurement
types were discussed, with experimental results presented
using measurements of the phase of the strain at a single
frequency. Because the forcing is controlled, the measure-
ments may be synchronously demodulated over any length
of time to give any desired rejection of measurement noise.
The effective Young’s modulus estimated this way is very

close to the dynamic value measured by DiMarco and oth-
ers (1993) at higher frequencies in multi-year sea ice. While
their measurements and ours were made at similar air tem-
peratures, there is no way of comparing the structure of the
ice. We also found that the dynamic characteristic length
implies an effective Young’s modulus that is substantially
less than the value 6×109 N m−2 which has previously been
taken as a typical value.
In summary, we conclude that it is feasible to measure

the dynamic characteristic length of ice sheets by forc-
ing the ice and using localized measurements of the flex-
ural response. Because the response is due to bending
at the periods and length scales of interest, the resulting
value is the characteristic length relevant to flexural mo-
tion. A portable version of the equipment used, e.g., sledge
mounted, would enable rapid and straightforward measure-
ment of field values to enable comparison with laboratory-
scale results.
The variation of characteristic length with frequency and

distance remains a topic of interest. Future research will
be made to determine the details of how the characteris-
tic length varies as a function of frequency of flexure and
propagation distance, and what mechanisms are involved.
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