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Abstract
Determining vibrational power ßow in a structure requires knowledge of local mechanical
properties as well as measurement of the vibrational motion. By using more measure-
ments than are required to measure the motion, we model-Þt to Þnd the local mechanical
properties and hence determine directional power ßow. We comment on the selection of
optimal transducer placement for greatest measurement accuracy, and give an example
of measuring directional bending-waves in a wood beam where the dynamic mass and
rigidity are unknown a priori.

1. Introduction
The New Zealand building industry uses timber framed constructions extensively in
smaller sized buildings, and this has many advantages in speed and economy of con-
struction and in use of an indigenous renewable resource. However, sound transmission
can be a problem because of the light weight and stiffness of structures and this detracts
from its use particularly in multi-residential buildings.
This work is part of a project to measure and model sound transmission in timber

framed structures. We treat timber elements, such as studs and joints, as simple beams,
to develop a method for measuring the applicable dynamic properties. A theoretical
model is used for the bending modes of the beam, which are most important in acoustic
radiation. The relevant dynamic properties of pinus radiata (the most common structural
timber) have been measured and found to be close to but not identical to the static
properties.



2. Bending Waves in Beams
Under the usual thin-beam assumption the transverse displacement, η(x, t), is related to
the applied pressure, p(x, t), via [1]

Bηxxxx +mηtt = p, (1)

where x is the coordinate along the beam, t denotes time, and a subscript denotes
differentiation with respect to the variable. Here B is the bending stiffness of the beam,
and m is the mass per unit length. Note that both B and m are usually taken to be
constants, though for practical materials the effective values can vary spatially and with
the rate of bending.
The modes of the beam have the form ei(kx+ωt). In sections of the beam where no

external pressure is applied we have p = 0 and the only allowable solutions have k and
ω related by k = (ω2m/B)1/4. At Þxed radial frequency, ω, the displacement takes the
form (the real part of)

η(x, t) = eiωt
³
a1eikωx + a2ekωx + a3e−ikωx + a4e−kωx

´
, (2)

where kω is the positive real allowable root. We will denote the expression in the paren-
theses by η(x,ω), which is the complex coefficient of eiωt. The modes with coefficients a1
and a3 are travelling waves, propagating towards −∞ and +∞, respectively, while the
other two modes are evanescent and decay away from the location of forcing or joints in
the structure.

2.1 Power ßow
The power transported by the wave travelling towards −∞ is [1] P = |a1|2Bωk3 =
|a1|2B1/4m3/4ω5/2. Note that calculation of power requires the amplitude a1, the bending
stiffness B, the mass density m, as well the (known) frequency.

3. In Situ Measurement
Suppose the transverse displacement is measured at N positions, x1, x2, · · · , xN , giving
the N time series η(xl, t) for l = 1, 2, · · · , N . The Fourier transform of each time series
gives the complex amplitudes η(xl,ω) for l = 1, 2, · · · , N , at each position and radial fre-
quency, ω. We actually measure the transverse acceleration, hence the Fourier transform
gives −ω2η(xl,ω), though this does not fundamentally affect our calculation. Given the
set of measured complex amplitudes, the various unknown parameters and amplitudes
may be found by Þtting the functional form of η(xl,ω) to the measured values.

3.1 Estimating modal amplitudes
Consider the simple case where the ratiom/B is known (perhaps by static measurement)
and we wish to Þnd the 4 modal amplitudes a1, a2, a3, a4. This may be done using
standard model Þtting methods [2], as follows.



Write E as the N × 4 matrix

E =


eikωx1 ekωx1 e−ikωx1 e−kωx1

eikωx2 ekωx2 e−ikωx2 e−kωx2
...

...
...

...
eikωxN ekωxN e−ikωxN e−kωxN

 , (3)

the vector of coefficients as a = (a1, a2, a3, a4)
T , and the vector of measurements as

y = (η(x1,ω), η(x1,ω), · · · , η(xN ,ω), )T . The relationship between amplitudes a and
(noise-free) measurements y is then Ea = y, so Þnding the coefficients a requires solution
of this matrix equation.
The matrix E is generally invertible when 4 measurement positions are used, i.e.,

N = 4. While that case provides a simple theoretical route, it is seldom practical as E
can be ill-conditioned over a range of frequencies, causing measurement imprecision to
lead to spurious estimates of the amplitudes.
The accuracy of estimates is always improved by using more than 4 measurement

locations. Since E has rank at most 4, and y then has N > 4 components, measurement
and modelling errors will cause y to lie outside the range of E. Modelling errors arise
because the timber beams are never precisely homogeneous and measurement positions
contain error. We only explicitly consider measurement error and assume that the mod-
elling error can be treated within the same framework. We assume that measurement
error is additive, i.i.d. with zero-mean normal (Gaussian) distribution and variance σ2.
That is, Ea = y + n, where n = (n1, a2, · · · , nN)T with each nl ∼ N(0, σ2). Then a
can be found by maximum likelihood estimation (equivalently, Ea = y solved in the
least-squares sense). Since the matrix E will still have small (though non-zero) singular
values, it is prudent to regularize [3] giving the estimate

�a =
³
EHE + αI

´−1
EHy, (4)

in which H denotes conjugate transpose, I is the 4× 4 identity, and α is a small positive
regularizing parameter. There is an extensive theory on how to set the value α [3],
however we simply use α = kEHEk2Nσ/kyk2 which suppresses the effects of noise while
otherwise allowing accurate estimates of the coefficients.

3.2 Estimating the mechanical properties
When measurements are made at 5 or more locations, we may extend the method given
above to include estimation of the ratiom/B that appears in the expression for wavenum-
ber. We do this by adjusting the value ofm/B, as well as the four coefficients a1, a2, a3, a4,
to minimize the square misÞt kE�a− yk22 between the predicted measurements, E�a, and
the actual measurements, y. Since, for a given value of m/B the best Þt is achieved
using equation 4, we may Þnd the best value of m/B by adjusting kω appearing in the

deÞnition of E to minimize kE
³
EHE + αI

´−1
EHy − yk22.

While the ratio m/B is determined by the Þtting procedure, a second measure is
required to obtain the values B and m separately. Since we use point forcing of the
beam for the ratio of force to amplitude of the outward travelling wave depends on the
factor m3B, measuring this ratio allows both parameters to be determined.



3.3 Optimal measurement location
The misÞt kEa − yk22 is proportional to the log-likelihood [4] of the parameters given
measurements y. A measure of the amount of information in the measurements about
the parameter m/B is given by the Fisher information measure [4], which, since the
noise is assumed Gaussian, is k∂/∂(m/B)Eak22/σ2. Optimum measurement geometry is
found by maximizing this number over feasible measurement positions.

4. Experimental Results
We measured the bending waves in a 2.8 m length of 100 mm× 50 mm dry pinus radiata,
mounted between near-anechoic sand traps. This beam was centrally driven by a point
source with power between 100 Hz and 3 kHz. The resulting transverse acceleration was
measured at distances (close to) 400 mm, 600mm, 800 mm, 900 mm, and 1000 mm from
the forcing.
By Þtting the modal amplitudes and m/B as above, we determined: The amplitude

of the wave reßected from the sand trap was about 10 % of that entering the trap, hence
about 99 % energy absorption is being achieved. The value of B/m decreases from
2.5 × 103 Nm2 at 100 Hz to 1.45 × 103 Nm2 at 3 kHz, roughly linearly with frequency.
This compares with the value 2.65× 103 Mm2 measured statically.

Conclusions
We have shown that both modal amplitudes and mechanical properties can be estimated
from measurements of transverse motion. Using this method we found that the mechan-
ical properties of pinus radiata vary with frequency and, hence, accurate measurement
of power ßow cannot rely on the statically measured value of m/B.

Acknowledgements
The authors are grateful to the PGSF for supporting this work under grant MDA 801.

References
1. Cremer, L., Heckl, M. and Ungar, E.E., "Structure-Borne Sound", Springer-Verlag,
1973.

2. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., "Numerical
Recipes in C", 2nd ed., Cambridge University Press, 1992.

3. Hansen, Per Christian, "Rank-DeÞcient and Discrete Ill-Posed Problems: Numerical
Aspects of Linear Inversion", SIAM, 1997.

4. Cox, D.R. and Hinkley, D.V., "Theoretical Statistics", Chapman and Hall, 1974.


