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ABSTRACT

Chung and Fox previously presented a mathematicafiatational model giving good
prediction of low-frequency vibration of light-weig timber based floor/ceiling structures
(LTFS) made up of: upper plate, joist beams antingeiln that work the geometry of the
structure was assumed known, and precise. Expdiingata from mock-up LTFS validated
that model. In this paper we present an augmentaticthat model by including uncertainty in
the placement and shape of the timber joists. i lede the variability in vibration response
in the low-frequency range by taking account of saeaments of the bending and twisting of
301 timber beams. Although, the model was originabnstructed for low-frequency
vibration, its usefulness in the mid-frequency eufg> 150Hz ) is discussed. Earlier results
showed that the rigidity of the connection betwé®sm upper plate and joist beams plays an
important role in predicting resonance frequeneied vibration levels. We further consider
these connection conditions in the presence ofrtaingy.

1 INTRODUCTION

In this paper we extend the recent series of reBearon the light weight timber based
floor/ceiling structures (LTFS) by the authors addw Zealand scientists ([4,7]). A series of
papers by Brunskog and Hammer ([1,2,3]) show tifeces of cavity space and the joists in the
LTFS. Craik ([5,6]) show the vibration propagatiacross junctions between flexible plate and
beam. Our extensions over their models are, finstusion of slippage interaction between the
plate and the joists, and second: inclusion ofuitarities of the joist properties.

This paper examines the effects of irregularitiesthe components on the low- to mid-
frequency vibrations. The irregularities consideheste are the Young's modulus, the shape of
the joists and the varying rigidity at the contaetween the upper plate and the joists.

In order to cope with the real life structures, thedel must be able to incorporate the
changes without going through the modelling procedagain. For this reason we chose the
variational formulation of the system. The solutionthis case the deflection of the components,
is the minima of the total energy in the structife show how to incorporate the interaction
conditions between components, using the floorfggdonfiguration shown in figure 1.
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Figure 1. Schematic drawing of an example of th€&T

2 RESULTS FROM DETERMINISTIC MODEL

The authors ([4,7]) have shown that the determinisbdel can predict the vibration (shape
of the root mean squared velocity) well at a fregpyerange lower than 80Hz. An examples of
the comparison of the root mean squared velocityéen the modelling and the experiment
results is shown in figure 2. The dimension ofghecture is 7m by 3.2m. The joists are running
in the lengthwise direction.
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Figure 2. Comparison of the root mean squared itglo€the experimental (solid) and
the theoretical (dashed) results from the struatufgure 1.



3 FORMULATION

3.1 Fourier expansion of vibration

The Fourier expansion method is chosen becausdéeofragularity of the shape of the
structure, in this case a rectangle. Furthermoreaied mounting condition for common
floor/ceiling structures isimply supported. The deflection of the upper plate, ceiling anidtp

are expanded as follows,
N

W (xy)= 2. et (x) ¢ (). 1=0,2 1)
vvl(x,j):ZN_:c}dwm(x), j=12,..5 2)

where

wm(x):\/%sinkmx, t//n(y)=\/g sinky, fomn=1,2,..N\

andky,= zm/ A, kn=zn/ B.

The acoustic pressure in the cavity is expressedHélynholtz equation. Therefore the
acoustic pressure can expanded by the Fouriereassines in thex(y) plane because the walls
of the cavity is assumed to be acoustically harg sBlving the Helmholtz equation using the
separation of variables, acoustic presgfrey,z) can be expanded as

p(xy.2)= i (rQem+r Qe (x)B,(y)

m,n=0

whereym = (kn 2 + xn % - k) %° andk=w / c, ¢ being the speed of sound. The modes are
a,,(x) :\/%coskmx,ﬁn(x) =\/g cox,y , fomn= 0,1\

3.2  Energy of the components

We derive the variational formulation of the wheteucture with respect to the vectors of the
Fourier coefficients of each component. This foratioh procedure enables one to change the
configuration of the structure because the appafemh of the resulting equations stay
unchanged.

The strain energy and the kinetic energy of a Kiafhplate ([8]) is given by

210 L{ol(ew 2 v i) marwaay
and for an Euler beam we have
S I (B, - maud ox 3)

wherew, D, E, | andm are vertical deflection, flexural rigidity, Yousgmodulus, moment of
inertia (of the beam) and mass density, respegtivel
The strain energy of the plates and the beams eaexpressed using the vectors of the
coefficients of the expansion given by equatioasd 2,
T =%ci‘M.c i=0,12,



where the index=0,1,2 indicates the upper plate, the joists amdcikiling, respectively. Note
that the matriceM; are diagonal.

We consider the joist beams that are in contadt wie upper plate. The deflection of the
joists is exactly same as the upper plate, whiablddo the following relationship betweenand
Ci.

¢ =Lc, 4)
where matriXx. represents the following summation

Zcr(r)mwn(yj)a J =l,2,...,Sl

The ceiling is normally attached to the joists hplyer clips that are designed to isolate the
vibration of the joists. The potential energy of thubber connectors is

T .
2 2AW(X, D) %, Y}
i
wherer is the spring constant of the rubber connectaatkxt at X;,y;).

3.3 Inclusion of irregularity
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Figure 3. (a) 10 samples of the measurementsdirttber shape. (b) average of the
power spectra density of the timber shape.



The irregularities considered here are three, whdoh contact rigidity, joist's Young's
modulus and shape of the joists. The irregulariiess defined as the deviation from the ideal
constant value. We denote the parameters by

4(x, }), joist shape

o, +0(X, j), contact regidity

& +&(X, }), Young's modulu
Note that the mean of the above deviations is ZEh@ above irregularity functions can be
characterised using their power spectral densBD(P for example the PSD 6fx,)) is

6

.1
Sy(€) =lim —

where 3(&) Is the Fourier transform efandT is the sampling period (see [9]). In the remainder
of this subsection, the irregularities are incogped for the given PS[3,,() andS.(&).

The measurement data of the 301 dry pine beamssticatrently available to the authors is
shown in figure 3 as the average of the PSD. Tamgles of measurements are also shown. The
dimension of the beams is approximately 0.1m byn0dghd the length is 2.4m. The PSD in
figure 3 indicates that the beams have mostly tnbi@e twists or four at the most.

3.3.1 Joist shape

The deviatiorg gives curves instead of straight lines for thetaochbetween the upper plate
and the joists. We first take the Taylor expansbithe vibration modes at the contact curves
and omit the higher terms becadlss small.

¢/n(yj +6(x, J)) =§:(Knyj'9iEX, J'))I d(;l,;{n (yj)
:wn(yj)+K§yjH(X’ j):Bn(yJ')

Note that the first term leads to the zero devimsolution given from the contact condition

equation 4.
The above expansion leads to the following modiéiedtact condition.

S (x)=3 () a(y, + 4x 1))

m=1 m,n=1

()

Using the orthogonal relationship and equationvegi
N
C:rj = Z_lcr?m[/ln (yJ)
. (©)
+anjcr(r)1'nj.0 B(X’ J)% (X) % (X) dX
whereq, :Kfyjﬁn (yj) . Hence we rewrite the above equation with matatations.

¢, =[L+Ly]c,



The elements of matrixL, can be better visualised by rewriting the formulsing the
convolution of the Fourier transform. Then the edets ofL, are computed by

0y | 0% H* {8 (ky ~ k) = ks i)} )

where * is the convolutionH (E) is the Fourier transform of rectangular pulse @],
~ i
H (f) :E(GAE —1)

Figure 4 shows illustration of the above convolngioThese timber beams are not intended
for the floor/ceiling structures as they have manigts and turns. However, if we were to use
the data in our 7 meter long LTFS, figure 4 teBstliat we would have to compute higher order

off-diagonal terms inL, in order to capture the irregularity.

We rewrite the above formula so that the deviatiart pan appear as additive terms to the
regular term. The potential energy contributiomfrthe beams is then

T, :%C;Mlclzéc‘o(l_ +L,) M,(L +L,)c,

Higher order terms may be used when more detailthefshape deviation have to be
included. When only the first order terms are udlkd,deviation parts become simple additive
terms to the deterministic parts.
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Figure 4. lllustration of the convolution in equoati7, i.e.,0*H . The
delta functions are depicted as arrows in the tigue.

3.3.2 Joist Young's modulus
The Young's modulus deviatieancan be incorporate using the similar procedurermifor 6.
The strain energy of the joist beam is



| ¢a | dPwg ’
Ejo (£0+g(x, j)){ o (X,j)} dx
wherel is the moment of inertia. Again the deviatiomxpressed by the power spectral density,
T AR ET:
S&s (5) - !-IETJOEF (f)|

where ¢ is the Fourier transform ef
Using the expansion @f; ande gives

%ci{ M,+L} c,
where the elements ok, are derived by

A .
Ikmkm,J.0 £(x, 1)@, (X) @ (x)dx
Rewriting the integral part of this equation in gmmilar manner shown in equation 7 gives

|kmkm,[fs*ﬁ*{d(km—km.)—d(km +km.)}J 8)

3.3.3 Contact rigidity
The potential energy due to the slippage resistance

NR (Hdw o)
22 Sl ot ) 5 Gt o
whereH= hg + h;.

The resulting energy is also written using the roasrand the vectors of the coefficients.

1.
EClNSCl'

Matrix Ns can be decomposed into the following determinetid deviation parts.

N,=N+L,
where the elements &f are derived from the following integrals
kK. [a* H* {0k, —Ky )+ O(K,, +|<,n-)}}
The deterministic matriXl is a diagonal matrix afyH%2/4.

3.4 Acoustic pressure in the cavity
The acoustic pressure and the plates are couplgtedyeumann conditions zt0, h,
o =Pm(xy). T = e (xy).
wherep is the mass density of the cavit?/ air. The abavaldions give the relationship between
¢ = (Co, ¢2) andr” (vector ofl > andlm,?)
QI = pw'c

where the matriX. is derived from the integrals of the productste basis functions,
.[OA J.:W“ (X) ¢, (y) a., (X) B, (y) dxdy

The contribution from the air pressure must be dddghe equations for the plates. Then we
have,




M, c=Q,I+F
where the excitation vectéris given by

Rt (%) ¢ (o), mn=1,2,..N
where Ko,Yo) is the location of the excitation akdis amplitude of the force.
Hence the vectorg andc, can be computed from

M, -Q,\c)_(F
oo ke lo)
wherel is an identity matrix.

In order to include the irregularities, we simpbuye to modifyM,in equation 9 to
M, +L,+L, +L,

3.5 Additional components

Here briefly demonstrate how additional componeras be incorporated into the model.
The structure depicted in figure 1 has additiorsllimg batten attached to the ceiling. These
battens can be added to the model by followingsimae way how the joists were attached to the
upper plate. Let; denote the vector of the coefficients of the addal components, which are
now expanded ovenf,}. Therefore we have an equivalent contact conditmequation 4. Only
this time the matrix represents the following surnama

> (x). 171,25,

m=1
whereS; is the number of battens amdis the location of the batten. The strain enerfjyhe
battens,

1
7L =ML,
can now be added to the total energy formula ag/sho section 3.2.

4  SUMMARY

We have shown how the irregularities in the comptmef the light-weight floor/ceiling
structures can be included in the theoretical mod@leé irregularities are represented by the
deviation from the expected values. The deviatsothén incorporated into the solution formulae
as the PSD as shown in figure 2. The shape of 8@ Rtuitively illustrates how many off-
diagonal elements are needed to represent thalliardg in the system of equations 9. The most
notable advantage of the method of solution is tietformulae remain unchanged regardless of
the complexity of the structure.
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