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ABSTRACT
A recent project completed at the Acoustics Research Centre succeeded in producing a cost-
effective and buildable timber-framed inter-tenancy floor with impact sound insulation perfor-
mance at least as good as a concrete slab. Typical light weight timber floor/ceiling structures
consist of horizontal joists supporting an upper floor and lower ceiling, often via resilient
rails, with damping material within cavities or as part of the flooring layer. The focus of that
project was on low-frequency performance since the majority of noise complaints in relevant
circumstances relate to intrusion of low frequencies. We present the modelling component
of that work, and the calibration by test measurements. The use of an intuitively accessible
variational model provided insight to the role played by components in traditional construc-
tions and allowed subsequent design optimization. Within the model, representation of a
composite structure is performed within the computational step, giving efficient computer
implementation while maintaining flexibility to represent complex constructions. In particu-
lar the boundary conditions of individual building elements may be included in a simple way,
which is an important consideration when modelling “flanking” paths for sound transmission.

1 INTRODUCTION

Buildings in New Zealand predominantly employ lightweight timber framed (LTF) construc-
tion, since LTF buildings are quicker and cheaper to construct than an equivalent in concrete.
However, with LTF buildings there is a concern over poor sound insulation between neighbour-
ing rooms that share a ceiling/floor or wall. Most disturbing, as measured by the number of
complaints to noise-regulating authorities, is the low frequency ‘thumping’ noise generated by
footsteps and electronic sound systems. The aim of this study is to model and predict in detail
the acoustic performance of timber floor/ceilings, in the low-frequency regime, to provide a de-
sign tool and intuition for producing new practical LTF building designs that optimize sound
insulation.

Figure 1 shows a cutaway drawing of a typical floor employing timber joists. As can be seen,
the floor is a composite of simple components. Apart from horizontal supporting joists, this
floor includes an upper floor, a lower ceiling that is suspended from metal rails by vibration-
isolating clips, and porous sound-absorbing material in the cavities formed between joists, floor,
and ceiling. A range of connection methods are possible including nails, screws, and glue, and of
particular interest is the ability to include the mechanical properties of these various connection
methods in a simple and realistic way so that their influence may be determined.
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Figure 1: Cutaway schematic of a timber floor construction used in model calibration.

In our mathematical formulation we model the main components as plates (floor and ceil-
ing) and beams (joists). We exploit the feature that the construction is layered and typically
rectangular to construct the computational scheme.

The study reported here was adjunct to an industry and academic research consortium con-
tracted by the (Australian) Forest and Wood Products Research and Development Corporation
(FWPRDC) to design a timber floor with at least the sound isolation of a standard concrete floor.

2 MATHEMATICAL MODELLING

A series of articles by Hammer and Brunskog [1, 2] present detailed studies of the modelling
of joist-floor vibration. Their technique is based on a model and solution developed by Mace
[3, 4, 5] which assumes periodicity of the joist locations and a floor of infinite extent. These
model the floor as a periodically stiffened thin plate, hence assume that components remain in
contact though slip without resistance at the interface. That assumption seems dubious at best
for actual timber floors. Infinite double leaf wall structures are studied in [6] and [7], also using
Mace’s solution, hence also assuming similar contact conditions.

Calculation of coupling loss factors for use in statistical energy analysis has lead to studies of
vibration across a plate-beam connection [8, 9, 10] with more realistic contact conditions, using
a method due to Ashton [11]. In [12, 13], these methods are used to find sound transmission
through double-leaf walls with various contact conditions.

All these articles model vibration and sound transmission using differential equations derived
using force-balance conditions. One difficulty of this approach is that simplification of the
model is difficult since it requires comparison of vector forces which typically have large and
small components within a single vector. In contrast, we adopt a variational formulation which
is mathematically equivalent but has the substantial advantage of describing the dynamics in
terms of scalar energies, which are directly comparable. A less obvious advantage of variational
methods is that they are closer to consistent and efficient computational schemes, such as the
finite element method and it’s generalizations. In this section we derive the variational model
and our computational scheme.

In addition to the existing theoretical models, Blazier and DuPree [14] suggested an empir-
ical model based on homogeneous plate theory, which relates vibrational velocity to the impact
sound pressure level (ISPL).



2.1 Variational Formulation

The variational formulation is based on the Lagrangian function [15]

L (w(t)) =
∫ T

0
[K (t) +W (t)−P (t)] dt, (1)

in which P and K are the instantaneous potential and kinetic energies of the structure, respec-
tively, and W is the work done on structure by external forces. For a given motion w(t), the
terms in the Lagrangian function may be calculated using the theory of linear elasticity [16]. The
true motion of the structure w(t) makes the Lagrangian stationary with respect to admissible
displacements. We use the restriction to admissible displacements to determine dominant modes
of vibration by selective inclusion, in contrast to traditional numerical studies that base this on
analysis of output from models allowing arbitrary motion.

For a single component (plate or beam) the strain energy is expressible as

P(t) =
1
2

∫

V
εijτijdx dy dz (2)

(summation convention assumed) in which V is the volume occupied by the component, εij and
τij are the strain and stress tensors, respectively. The kinetic energy is given by

K(t) =
1
2

∫

V
ρ‖ẇ‖2dx dy dz

in which ˙ denotes the time derivative, and ρ is the mass density per unit volume. For a
homogeneous isotropic material the stress in equation 2 is a simple function of strain depending
on the Young’s modulus E and Poisson’s ratio ν. We also assume a linear strain displacement
relation since we are concerned only with small motions.

The classical plate and beam equations may be viewed as examples of modelling by selective
inclusion of modes of vibration. For example, the classical Kirchhoff plate model follows from
assuming that the middle surface S of the plate moves transversely, and that lines perpendicular
to the middle surface remain perpendicular and unchanged in length. Then the motion of each
point in the plate is a function of the transverse displacement of the middle surface, which we
denote w(x, y, t) for (x, y) ∈ S. In terms of that function, the strain energy is

P =
D

2

∫

S

(
w2

xx + w2
yy + 2νwxxwyy + 2 (1− ν) w2

xy

)
dxdy

while the kinetic energy is

K =
ρh

2

∫

S

(
ẇ2 +

h2

12
‖∇ẇ‖2

)
dxdy

where D = Eh3/
(
12

(
1− ν2

))
is the flexural rigidity and h is the plate thickness. Stationarity of

the Lagrangian in equation 1, and neglecting rotational energy, gives the classical plate equation

D∇4w + mẅ = p (x, y, 0) in S

where

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

is the biharmonic operator in the plane of the middle surface and m = ρh is the mass density
per unit area.
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Figure 2: A layered structure showing components linked by springs that model the coupling.

2.2 Fourier Basis for a Single Component

Since we are concerned with small motion, and linear responses, we restrict time variation
to exp {iωt} and appeal to superposition to calculate the response for arbitrary forcing. Then
the time derivatives may be written as ˙ ≡ iω.

We discretize the spatial representation of motion via a Fourier series as follows. For a plate
with motion parameterized by the transverse displacement of the middle surface defined on the
rectangle (x, y) ∈ (0, A)× (0, B) we write

w (x, y) =
N∑

m,n=0

cmnφm (x) ψn (y) (3)

where
φm (x) ∝ exp (kmx) ψn (y) ∝ exp (κny) with km =

πm

A
κn =

πn

B
.

These basis functions obey the convenient orthogonality relations 〈φn, φm〉 = δnm and 〈ψn, ψm〉 =
δnm. Also

∂

∂x
≡ km and

∂

∂y
≡ κn.

Thus the differential terms become algebraic in each component, with discretization achieved
by the finite summation in 3.

In this basis, the potential energy for the Kirchoff plate may be written as the quadratic
form P = 1

2cTMc where c is vector of coefficients {cmn}, and M is the matrix M = D
(
k2 + κ2

)2

in which k = diag(kmn) and κ = diag(κmn). Similarly, the kinetic energy is a quadratic form
over the coefficients, c, and hence so is the Lagrangian. Finding a stationary solution is then
easily found by solving the normal equations, or by directly minimizing the quadratic form.

2.3 Uncoupled Composite Structure

Figure 2 shows a cross section through a typical layered joist-floor construction. We exploit
the layered structure to form a computational scheme for the composite structure. Motion of
structural elements in layer l is parameterized by coefficients cl = {cl

mn} for l = 1, 2, . . . , L. For



a plate layer the displacement is explicitly wl (x, y) =
N∑

m,n=0

cl
mnφm (x) ψn (y) while for a joist

layer we write wl (x, n) =
N∑

m=0

cl
mnφm (x) for joist number n = 1, 2, . . . , N l. In each case, the

potential energy for a component is the quadratic form P l = 1
2clTM lcl for appropriate matrix

M l.
The potential energy of the structure, with no coupling between components, requires sum-

ming potential energies and work by force on the floor, to give

P =
1
2




c1

c2

c3

...
cL




T 


M1 0 0 · · · 0
0 M2 0
0 0 M3

. . .
ML







c1

c2

c3

...
cL




+




f1

0
0
...
0




T 


c1

c2

c3

...
cL




or
P =

1
2
cTMc + fTc

for block matrix M .

2.4 Coupling and the Composite Model

Coupling between components in a composite structure is modelled by determining the
energy associated with a (relative) motion of the components in question. This is relatively
simple to do in terms of the local coordinates of each component. We restrict ourselves to energy
functionals that are quadratic in the displacements of coupled components, and hence maintain
the ease of solution that the uncoupled model has. Then the coupling force is equivalent to the
restoring force of a spring with some spring constant. For this reason we depict the coupling
forces in each mode of relative motion (transverse, slippage, rotation) by an appropriate spring.

Including coupling of this form then gives a block matrix system of the form

P =
1
2
cT




M1 + J11 J12 J13 · · · +J1L

J21 M2 + J22 J23

J31 J32 M3 + J33

. . .
JL1 ML + JLL




c + fTc

where J lm represents the coupling between layers l and m (and is zero if there is no coupling).
Again this is made stationary by solving the normal equations

Mtotalc = −f

or directly minimizing the quadratic form.
We prefer the latter numerical method, using conjugate gradient optimization, since then we

need only operate by the matrix Mtotal which is done by summing the operation of sub-matrices,
and we do not need actually assemble Mtotal. In this way, we only need consider the energy for
individual components, and the coupling energy between pairs of coupled components, and need
never write equations for the whole structure.

2.5 Boundary Conditions and Flanking

Boundary conditions imposed by the mounting of the structure may be treated in two distinct
ways. In our test rig the mounting was against a rigid masonry structure. Then the boundary



conditions may be treated as a constraint on the allowable vector of coefficients c. For example,
simply pinned mounting at the edge of the floor determines that the cosine terms in Equation 3
are zero, and one need only represent the sine terms. This potentially halves the number of
coefficients. We do this in our simulations. However, more general mounting, such as when the
floor is mounted in a timber-framed building, allow energy flow through the boundary of the
floor and are better modelled by including the energy terms in the total Lagrangian.

These two approaches are actually mathematically equivalent, and interchangeable in theory.
However the approaches lead to numerical problems with quite different stability, and the choice
of which approach to use should be based solely on well-conditioning of the resulting normal
equations.

3 MODEL CALIBRATION

3.1 Experimental Program

25 different configurations of floor/ceiling systems of the type shown in Figure 1 were tested.
Each consisted of all, or some, of an upper plate, joist beams, sound absorbing glass-fibre, rubber
clip, ceiling battens and ceiling panels, ranging from the simplest single layer upper plate and
joist beams to multi-layer floor (including a layer of sand-sawdust mix) and multi-layer ceiling
panels. Results in this section are presented for the floor depicted in Figure 1.

An electrodynamic shaker mounted on a beam straddling the floor was used to provide a
vertical force on the floor upper surface. The shaker was connected to the floor through a wire
stinger and force transducer. A scanning laser vibrometer (Polytec PSV 300) was used to mea-
sure the transverse velocity of the floor on a grid with a spatial resolution of 10-14cm. This
gave a map of the surface velocity of the floor relative to the input force. The shaker was driven
with pseudorandom signal with a energy from 10 to 500Hz, and a duration of 2 seconds, giving
a frequency resolution of 0.5Hz in the calculation of spatial transfer function. We also measured
input impedance of the floor via an accelerometer at the force transducer.

3.2 Stiffness of Ceiling Battens

In calibrating each model we fit many aspects and parameters of the physical model. At the
outset of this study we were particularly interested in the effect of slippage between joists and
floor on sound transmission – particulary since this effect is implicitly neglected in all existing
models of vibration in rib or joist-stiffened floors. We found that correctly modelling slippage
is essential in matching the frequency of the lowest resonances of the system, while assuming
no slippage (as is most common) renders the model invalid since then the dominant physical
motion is not represented and values of joist stiffness, etc, required to give a best-fit to data are
far from the actual values.

Fitting of the stiffness of ceiling battens was another, unexpected, instructional phase of
the model calibration. In that case the best fit parameters were far from manufacturers quoted
values, however subsequent direct measurement showed that the best-fit model parameters were
indeed the correct dynamic values, and these differed significantly from the elastic properties
at static loading. Presumably this was a result of relaxation processes in the rubber used
within the vibration isolating clips. That result, amongst others, gave us confidence that the
variational model was correctly representing the major physical processes that contribute to
sound transmission, at least in the low-frequency regime.

Figure 3 shows the predicted velocity amplitude for varying stiffness of the ceiling bat-
tens from 2500N/m to 33000N/m, along with the measured velocity amplitude. The predicted
curves capture the bumpy feature in the experimental results near 100Hz when the stiffness is
11000N/m. This chosen stiffness value, 11000N/m, agrees with the calculated stiffness of the
component from its dimension (cross section size). It is interesting that battens with the stiffness
of about 5500N/m are also used by the building industry. Figure 3 clearly shows the difference



between the stiffness 5500 and 11000.
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Figure 3: Predicted root mean square velocity of the ceiling surface for varying stiffness of the
ceiling-battens, and measured values (expt.).

Figure 3 shows that the model fails to capture the peaks and the general shape of the mea-
sured curve for frequencies higher than about 100Hz, though the model predicts the approximate
amplitude in that frequency range. We suspect one reason is that above 100Hz the assumption
of line connection between the upper plate and the joist beams is no longer valid, as well as the
assumption of a uniform single plate failing.

4 CONCLUDING REMARKS

We have presented a mathematical and computational model for low-frequency vibration of
timber floors. The model is constructed by considering components separately, and in coupled
pairs, with assembly of a total system of equations only in the computational step. Hence the
model scales well with increased complexity of the floor construction.

Computation time required to ‘solve’ the model was small, allowing evaluation of designs
using modest (standard desktop) computing requirements. This stems from the efficient dis-
cretization of the variational scheme using Fourier basis functions. In the low-frequency regime
of interest, the model showed excellent fit to measured data with parameters accurately matching
measured parameters. This gave confidence that the model actually described the main physical
mechanisms in sound transmission., and allowed good predictive ability for the evaluation of
new designs. That was essential in the overall success of the project to design a timber floor
with performance in at least as good as a standard concrete floor.

The modelling work reported here was adjunct to the experimental program funded by the
(Australian) Forest and Wood Products Research and Development Corporation (FWPRDC).
A detailed report of all experiments, and further model calibration, will be available from the
FWPRDC web site www.fwprdc.org.au/ at some future date.
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