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Abstract
We consider the class of image recovery problems where the desired

image appears as the spatially-varying coefficients of a partial differential
equation (PDE), the data consists of measured values on the boundary,
and the forward map can only be adequately simulated by solving the
PDE subject to boundary conditions. This is the natural mathematical
setting for non-invasive imaging using strongly scattered waves. We give
a gentle introduction to the statistical (Bayesian) approach to solving this
class of inverse problems, and present some computational examples us-
ing sampling algorithms. The statistical approach quantifies the inherent
uncertainty in images recovered from incomplete noisey data using knowl-
edge of the forward map the measurement process and noise statistics.
The single most likely image, usually found by applying the inverse of the
forward map to the measured data, does not give a good reconstruction
in this class of problems because that image is unrepresentative of the
bulk of feasible images. Instead it is necessary to summarize the feasible
images by calculating expectations over the posterior distribution. One
advantage of this route to solving inverse problems is the ability to quan-
tify accuracy within the recovered image, while a major disadvantage is
computational expense. We use the illustrative example of imaging elec-
trical conductivity and give examples of reconstruction of an unknown
conductivity from simple synthetic data. In principle, high-level models
may be incorporated relatively easily in the sampling algorithms, and we
give a glimpse of some image models that are currently used.

1 Introduction

Non-invasive imaging used for medical diagnostics and geophysics often uses
scattering of waves to probe the object under investigation. These techniques
are non-invasive because the wave scattering is measured remotely from the
object, and the object is irradiated with waves from a source remote to the
object.
A common example is X-ray tomography where a person is irradiated from

one side using a point X-ray source and the partially-transmitted waves are mea-
sured using a photographic plate on the opposite side to the source, as depicted
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Figure 1: A schematic of the measurement process in X-ray tomography.

in figure 1. Because X- rays propagate through tissue in essentially straight-line
paths, largely independent of the particular tissue being imaged, the measure-
ment process may be treated as linear. That is, to a good approximation, the
mapping from unknown spatially-varying X-ray absorptivity to the measured
values is a linear relation.
However, many potential imaging modalities such as optical diffusion ‘to-

mography’ involve strong scattering of the waves. In these cases the paths of
propagation depend implicitly on the object being imaged. Then the wave field
that propagates and scatters must be modelled by requiring that it satisfies
a partial differential equation (PDE) in which the unknown object properties
appear as spatially-varying coefficients. Three examples of governing PDEs,
corresponding to three different types of energy being propagated, are given in
the following table.

object property governing PDE PDE classification
electrical conductivity ∇ ·(σ∇φ) = s elliptic

acoustic impedance ∇ ·(σ∇p) = σ

c2
p̈ hyperbolic

thermal conductivity ∇ ·(σ∇u) = u̇ parabolic

In each case the object property being sought is denoted by σ and appears as
the spatially-varying coefficient in the PDE governing the propagation of energy,
or ‘waves’. The measurements made are of the boundary values of electrical
potential φ, sound pressure p, and temperature u, respectively in the three
cases. If the scattered field can be well approximated as a small change about a
known field then the (linear) Born approximation may be used to simulate the
measurement process. Otherwise, the measurement process must be simulated
by solving the PDE subject to boundary conditions that correspond to the wave
irradiation. In that case the mapping from object property, σ, to measurements
is nonlinear. This latter property presents a basic difficulty in these inverse
problems and, as we will see later, is one reason why straightforward application
of algorithms that have been successful for linear inverse problems, such as X-ray
tomography, have been unsuccessful in solving this class of inverse problems.
A second source of difficulty can be understood by including in the analysis

the statistical detail of errors inherent in the measurement process. Inclusion of
the error process is critical for practical solution inverse problems such as these,
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where the forward map has a large range of sensitivities, though it is often
only treated in an ad hoc way in many mathematical analyses. A probabilistic
model for the error process results in a probabilistic model for the measurement
process and inversion is then naturally a problem of statistical inference for pa-
rameter estimation from data. A robust solution can often be achieved by also
introducing prior information in the form of a probability density over allowable
reconstructions. These three steps; accurately modelling the measurement pro-
cess, including the statistics of the measurement error and using a prior density,
characterize the ‘Bayesian’ approach to inverse problems.
Strictly, the Bayesian analysis ends with the formation of the ‘posterior’

probability density function over parameter space. However, useful image re-
covery requires presenting just one result (or at most a few) which is best done
by summarizing the posterior. How best to summarize the posterior remains a
topic of research and emerging ideas. A few decades ago available computing
resources limited the methods available to optimization algorithms designed to
find the mode of the posterior distribution, giving image recovery methods that
are equivalent to regularization. We give examples of regularized inversion in
section 3.1.1. The widespread use of the mode has lead to unquestioning accep-
tance that the mode is the best way to summarize the posterior. However that
is not the case for the class of problems considered here, and we give reasons for
that and specific counter examples in section 3.1.4. Instead, summarizing the
posterior requires considering the bulk of states in the support of the posterior,
which typically entails calculating expectations over the posterior distribution.
These high-dimensional integrals are computationally expensive, and much of
the authors’ research in the past few years has been to find efficient algorithms
for problems where the forward map requires solution of a PDE. We give exam-
ples of such calculations and thereby demonstrate that the required calculations
are tractable.
The simplest case of the title problem is imaging electrical conductivity in

2 dimensions, though it shares with the others the primary computational dif-
ficulty that the space part of the PDE is the elliptic, Laplacian-like, operator.
In this paper we use imaging of electrical conductivity as a running example,
and show how that inverse problem can be solved within an inferential com-
putation using Markov chain Monte Carlo. In section 2 we define an idealized
measurement set for conductivity imaging, in section 4 we present a statistical
formulation of the inverse problem, and in section 4.3 we present reconstructed
images, and other statistics. It is of formal interest to note that the other imag-
ing problems, such as imaging from ultrasound backscatter, can be shown to be
equivalent to a sequence of problems of this type [11].
While the expense of computing expectations is a major drawback of the

Bayesian approach to inverse problems, there are several advantages of this
method. One advantage is that other summary statistics may be computed at
the same time as the estimate of the image, such as the variance of the recovered
image values which gives a measure of ambiguity in the image. Examples of the
image pixel variance are presented in section 4.3. A second advantage is that
present, Markov chain, sampling algorithms allow the use of more sophisticated
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image models than do gradient-based optimization algorithms. In particular the
sampling algorithms can work with image space models that may be discrete,
or discontinuous, or even variable dimension. We conclude by giving a few
examples of mid- and high-level image-space models in section 5.

1.1 Properties of Inverse Problems for Image Recovery

In our work the spatially-varying parameters of the PDE form an image and we
often refer to the inverse problem as one of image recovery. The data is the set
of measurements from which the image is recovered, which will be either far-field
measurements of scattered waves or of appropriate boundary data. The forward
problem (or map) is the mapping from an actual image to the corresponding
data (strictly the noise-free data) while the inverse problem is to recover the
true image from measured data.
The following table sets out some contrasting properties between the forward

and inverse problems.

Forward Problem Inverse Problem
image −→ data data −→ image

physical model (PDE) implicit
direct computation indirect

well posed ill posed
unique never unique

The forward problem is found by modelling the measurement process using
a physical theory for wave scattering, and (as we saw in section 1) takes the
form of a PDE parameterized by the image. Simulating the forward map is
a well-determined direct computation (even though the PDE solution may be
computed via an implicit numerical algorithm). In contrast, the inverse prob-
lem is normally only implicitly defined by the requirement that the recovered
image be consistent with the data and so image recovery is an indirect calcu-
lation. Because the forward problem corresponds to a repeatable cause-effect
sequence, the forward map is unique and well posed in a natural metric. That
causal relationship also necessarily involves a loss of information (or increase in
entropy) [6] which makes the forward and inverse maps fundamentally different.
The inverse problem then requires recovering lost information which shows up
by the inverse problem being ill-posed, in our case discontinuous even in the
case of complete noise-free data. In the practical case where we try to recover
a continuously varying function on the basis of a finite data set, the inverse
problem cannot have a unique solution.
Later we will distinguish between the idealized data resulting from the for-

ward map, and the actual measured data which involves measurement impreci-
sion.
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Figure 2: A schematic of a typical measurement for imaging of electrical con-
ductivity. Current j is asserted on a pair of electrodes and the resulting voltage
v is measured on a second electrode pair.

2 Conductivity Imaging Measurement Set
In this section we define a simplified model for electrical conductivity imag-
ing (sometimes called electrical impedance tomography or EIT) to use as an
illustrative inverse problem. In section 4 we formulate this problem in terms of
statistical inference and give numerical examples of mean images using synthetic
data.
Figure Fig 2 shows a simplified schematic of a typical measurement pro-

cess for imaging the conductivity within an object occupying the circular region
Ω. Electrodes are placed around the boundary of the object, ∂Ω, at positions
x1, x2, · · · , xE. The schematic shows a current j being asserted on a pair of elec-
trodes with the resulting voltage v measured on a second electrode pair. More
generally we may assert a vector of currents j = (j (x1) , j (x2) , · · · , j (xE))T
and measure the resulting vector of voltages v = (φ (x1) ,φ (x2) , · · · ,φ (xE))T
with respect to some reference potential. If N different current vectors are as-
serted, and the resulting voltages measured, then the data consists of the set of
current-voltage pairs

d =
n
j(n), v(n)

oN
n=1

.

The unknown internal conductivity σ (x) is related to these measurements
via Neumann boundary-value problem (BVP)

∇ · σ (x)∇φ (x) = 0 x ∈ Ω
σ (x)

∂φ (x)

∂n (x)
= j (x) x ∈ ∂Ω
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Figure 3: A schematic showing parameter space ΣΩ and data space D. Shown
are the true image σtrue , noise-free data dnf, measured data d and the most-likely
image σML. The grey region in data space shows the range of possible measured
data, while the grey region in parameter space shows the set of possible images
consistent with the data d.

along with a reference for φ such as
R
∂Ω φdl = 0. Thus the data consists of re-

alizations of the inverse of the Dirichlet to Neumann map on the boundary[16],
denoted Γσ. The inverse problem is to find σ (x) from d. Note that simula-
tion of the inverse of the Dirichlet-to-Neumann map requires solving a linear
PDE, however the relationship between the unknown conductivity σ and the
measurements is not linear and, hence, the inverse problem is non-linear.

3 Statistical Model of Inverse Problems

In this section we give two descriptions of the relationships between image and
data in inverse problems in the presence of noise. First an intuitive description
and then the formal Bayesian model found by quantifying the error in the mea-
surement process and the resulting inherent uncertainty in the images recovered
from measured data.
Figure Fig 3 gives a schematic of the distributions of possible data and re-

covered images when measurement error is considered. True image σtrue results
in ideal, noise-free, data dnf under the forward map. Because of measurement
inaccuracy we do not actually measure data dnf, but some slightly noisy version.
The range of possible measured data, after corruption by noise, is shown as a
grey region around dnf. In a particular experiment we measure a single data set,
say d. If an inverse to the forward map exists we may apply the inverse to the
measured data d, or equivalently use a model-fitting procedure, to find image
σML which is typically the ‘maximum likelihood’ estimate of the image. Because
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Figure 4: A block model of the measurement and imaging process.

of the measurement error on d, there is in fact a range of feasible images each
being consistent with the measured data up to a feasible noise vector, and these
are shown by the grey region around σML. In practical image recovery problems
we begin with the actual measurements d, can calculate σML and the range of
feasible images, but do not have access to σtrue or dnf.
A point that we would like to emphasize in this paper, is that the image

σML calculated by straightforward inversion (or even regularized inversion) of
the noisy data d, is generally a poor estimate of the true parameters for the
class of title problems. We will examine this issue further in section 3.1.4.
The uncertainties in measured data and recovered image can be quantified

by modelling the various stages in the measurement process as shown in the
block diagram in figure 4. The true parameters, or image, is the starting point
of the chain. We do not measure σ directly, but rather some function of σ
where the function is called the forward map, denoted K. In this paper we
take K to be the map from σ to ideal data — that is data consisting of all
possible measurable properties of σ without any measurement error. The focus
of many theoretical studies in inverse problems is investigation of the existence
and uniqueness (and perhaps continuity) of the inverse map K−1. In many
cases in this class of inverse problems, K−1 is unbounded and so its existence is
not necessarily relevant to the performance of image recovery from actual data.
Further, with actual measurement equipment we measure a finite data set even
though there may be infinitely many possible measurables. The reduction from
all measurables to the set of quantities actually measured is often called “data
loss” though in mathematical terms it is a projection operator, P . It is usual
to refer to the true values of the measured quantities as the noise-free data.
It is unavoidable that this data is corrupted by measurement error with the
difference between the measured data and the noise free data being some noise
vector n. The probability density function (pdf) of the noise, fN(n) say, is
a property of the measurement equipment and it is this pdf that makes the
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measurement process probabilistic. The measured data, d, is a known function
of two unknowns, signal and noise. In order to fix ideas, suppose the noise
is additive, d = PKσ + n. Since the noise n is a random variable, and d
depends on n, then also the data d is a random variable with pdf given by
fD|Σ(d|σ) = fN(d−PKσ) (the Jacobian for the change of variables from n to d
is unity here). Thus the measurement process corresponds to drawing samples
from a known probability distribution that is parameterized by σ (and perhaps
other parameters) and the job of recovering σ corresponds to classical statistical
inference for estimating the parameter σ. The pdf fD|Σ is called the likelihood
function for the conductivity parameter.
A common case of noise pdf is when the measurement equipment has a

linear response and measurement error comes from many sources. Then the
noise is often normally distributed with zero mean, i.e. n ∼ N(0, s2) with
standard deviation s. As a result the data is also normally distributed with
d ∼ N(PKσ, s2), i.e. the unknown image is a parameter setting the mean
of the distribution. For the case of zero mean normally distributed noise, the
likelihood is explicitly

fD|Σ(d|σ) ∝ exp(kd− PKσk2 /2s2).
The measured data is finite dimensional. If the image is represented as a

function of real variables, it follows that there are infinitely many images that
are consistent with the data and the image recovery problem does not have a
unique solution. This property also holds for discrete versions of the inverse
problem. For example, in conductivity imaging of circular objects, linearized
about the constant image, there a few more than 100 singular values relatively
larger than the (good) measurement error of 1 part in 1000 [8]. Hence, only
about 100 components of σ are effectively measured, even though many more
pixels are required to represent σ if the measurement process is to be accurately
modeled. So even in the discrete case, the inverse problem is inherently non
unique.
The extra information, not available from the measurement process, that

needs to be included in the image recovery algorithm if a single value of σ is to
be recovered is often called prior knowledge. The nature of this information can
take various forms, with a corresponding range of mathematical defensibility.
The most defendable type of extra information are physical constraints on the
image such as the positivity of brightness, or electrical conductivity. More
generally we may know that the physical system is invariant under some group
of transformations [14], and hence so must be the representation of the image.
Regularization is often used in non-statistical approaches to inverse problems
and can be couched as prior knowledge, though it usually is determined by
a mathematically expedient requirement that the recovered image be smooth,
or small. The least defendable, though perhaps the most useful and the one
that would be useful to encode mathematically, are preferences of an expert
who would discard images containing obvious artifacts simply because they are
highly unlikely, though strictly possible.
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To simplify notation we will suppose that the space ΣΩ of conductivity
images is finite. The probability distribution of feasible images, consistent with
the actual data, may be quantified using Bayes’ rule for conditional probabilities.
The ‘posterior’ distribution for σ conditional on measuring d is

Pr (σ|d) = fD|Σ(d|σ)Pr (σ)P
σ∈ΣΩ fD|Σ(d|σ)

(Bayes’ rule)

where Pr (σ) is the prior probability distribution for images. In the ‘subjectivist’
formulation of probability the prior and posterior distributions for σ, Pr (σ)and
Pr (σ|v), are quantified representations of our state of knowledge about the true
value of σ [15].
The explicit use of a prior pdf is often a conceptual sticking point for some

people, though its inclusion is unavoidable. Since Pr (σ) is a distribution, its
functional form depends on the coordinate system (or more formally the mea-
sure) chosen. For any sufficiently smooth prior, there is a corresponding coordi-
nate system in which Pr (σ) is constant. So Laplace’s “principle of insufficient
reason”, which states that the prior should be set to a constant if no good rea-
son to the contrary exists, is equivalent to a quite strong statement that in the
coordinate system chosen the prior takes a constant value. Under a different
measure, the prior would not be constant. So choice of a prior distribution has
the same status as choosing the coordinate system for representing σ, which is
unavoidable. Our preference is to choose a representation for σ that is conve-
nient for computation and for expressing any knowledge about the image, and
then explicitly write the prior distribution.

3.1 Solutions are Summary Statistics

Once a particular data set has been measured, all information about the desired
parameters σ is contained in posterior distribution Pr (σ|d). In image recovery,
σ typically has many hundreds or thousands of parameters (e.g. pixels) and the
range of the posterior distribution is that high-dimensional space. Hence it is
not convenient, nor useful, to convey the whole posterior distribution to an end
user. Instead, summary statistics that characterize the posterior distribution
should be found, perhaps consisting of a single image or a few images that
indicate the bulk of feasible images in the support of the posterior.

3.1.1 Traditional Solutions - modes

For many decades, image recovery has been performed by finding, and reporting,
the mode of the posterior distribution. This approach has the intuitive appeal
that the mode is the single most-likely image — however, as we will see later, that
does not mean that the mode is representative of the bulk of feasible images.
Specifically the modes are the maximum Likelihood estimate (ML) and the
maximum a posteriori estimate (MAP), given by
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σ̂ML = arg max
σ∈ΣΩ

fD|Σ(d|σ),
σ̂MAP = arg max

σ∈ΣΩ
fD|Σ(d|σ)Pr (σ) .

For example, if the noise is additive Gaussian with zero mean and variance s2,
and we use a simple Gaussian prior of the form Pr (dσ) ∝ exp

³
− kσk2 /2λ2

´
dσ,

then

σ̂MAP = argmin kd− PKσk2 + θ kσk2 (1)

where θ = s2/λ2 is called the regularizing parameter. This estimate has been
discovered many times, in a number of settings and is variously known as
Tikhonov regularization, Prussian-Hat cleaning (in radio-astronomy), Weiner
filtering (when implemented as a filter), and is closely related to Backus-Gilbert
inversion. In the limit θ → 0 the map from d to σ̂MAP is the Moore-Penrose
inverse, while the case θ = 0 gives σ̂ML which is the least-squares solution first
suggested by Gauss in 1880.
Even though equation 1 can be derived within the statistical framework, we

make a distinction between this regularized solution, that seeks to recover just
a single image independent of whether or not that image is representative of the
bulk of feasible images, and statistical methods that base the recovered image
on the full set of feasible images.

3.1.2 Examples of ML and MAP Solutions

Figure 5 shows two examples of image recovery calculated using equation 1,
taken from a text used at Auckland for a graduate course on inverse problems
[13]. The two top sub-images show images that have been blurred by convolution
with a known blurring function, and then corrupted by the addition of Gaussian
noise. The right-top image has also had 50% of the degraded pixels set to black.
In both cases the un-blurred image is estimated using equation 1.
Because the blurring function has no spectral zeros, the forward map for the

left-hand example is invertible, and the inverse may be calculated using Fourier
deconvolution. The application of the exact inverse, giving the maximum Like-
lihood estimate, is shown in the left-mid sub-image. It is clear that the exact
inverse does not give a useful reconstruction. The reason for the poor perfor-
mance of the exact inverse is simply because many of the singular values of the
forward map are very small, leading to large amounts of noise in the reconstruc-
tion. The MAP estimate, with θ chosen using the L-curve criterion [7], is shown
in the lift-bottom sub-image and provides a readable reconstruction.
The forward map leading to the right-top sub-image is linear though not

invertible since there are half the number of data pixels as in the original image
pixels. However, the unblurred image may still be estimated using Equation.
1 and the resulting MAP estimate is shown in the right-bottom with θ chosen
using the L-curve criterion.
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Figure 5: A tableau of images giving two examples of image recovery as the
modes of the likelihood and posterior. The top sub images show noisey images.
The bottom two subimages show de-blurred images calculated via regularized
inversion for a suitable choice of regularizing parameter. The left mid image
shows the effect of applying the inverse of the blurring function to the top-left
image.
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As can be seen, good results can be achieved using regularized inversion, or
equivalently the MAP estimate, with suitable choice of regularizing parameter
θ. In examples like the ones here, where the variables are continuous, the
forward map is linear, and the noise is Gaussian, using a Gaussian prior leads
to a symmetric posterior where the mode is also the mean and it is hard to
see how the MAP estimate could be improved upon. However, in general these
conclusions do not hold for the title problem, as we will see in section 3.1.4.

3.1.3 Inferential Solutions

Since the posterior distribution gives the probability density over all images
consistent with the data and prior knowledge, any question about the true
image is best answered as an expectations over the posterior distribution. So if
g : ΣΩ → R is some function of the image, the expected value of g is

E [g (σ)] =
X
σ∈ΣΩ

Pr (σ|d) g (σ) . (2)

For example, if g is an indicator function for an image showing that the pa-
tient has cancer, then Equation. 2 gives the probability of cancer based on the
measurements and the prior information.
We give a sampling algorithm for computing the expectation in 4.2 and

numerical examples in section 4.3

3.1.4 Comparison of mode and mean

Our main point in this section is to show that in high-dimensional inverse prob-
lems (like image recovery), the mode of the distribution does not necessarily
represent the bulk of feasible solutions and hence does not necessarily give a
good approximation to expectations, such as the mean. We next give an argu-
ment why the mode need not be a good approximation to the mean, and then
an example where the difference is marked.
Consider the schematic of a posterior distribution with two modes shown

in figure 6. For the sake of the argument, assume that the maximum value of
Pr (σ|d), which defines the mode, is twice the value of the lower local maximum.
Also assume the width, say L, of the global peak is half the width of the lower
local peak in each of the coordinate directions σ1,σ2, · · · . Then the probability
mass (or number of feasible solutions) associated with the peak around the
mode is about PmaxLn compared to (Pmax/2)(2L)n for the lower peak. So
there is 2n−1 times more probability mass centered around the lower, broader,
peak. For high-dimensional problems where n is large, this metric factor can be
huge. Even for a coarse 100 × 100 pixel image, the lower peak would contain
210000−1 ≈ 103010 times more feasible reconstructions than the peak around the
mode. The function value is virtually irrelevant in comparison to the width of a
peak when calculating high dimensional integrals. Note that there did not need
to be two peaks for this to occur. If a distribution with a single mode becomes
broader as the function value decreases in some direction, then the bulk of the
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Figure 6: A schematic of a posterior distributiuon with two modes.

true noisy

Figure 7: True binary image (left) and gray-scale image showing the image after
pixel-wise addition of Gaussian noise (right).

probability mass will lie away from the mode. So we see that there is no reason
that the mode of a high-dimensional skewed distribution should have anything
to do with the mean of that distribution.
The following is an image-recovery problem in which the mode of the poste-

rior is very different to the mean. Consider the problem of recovering a binary
(black and white) image after pixel-wise addition of zero-mean Gaussian noise
with known variance. This toy example is chosen because the mode and mean
can be exactly calculated [9]. Interested readers should view that paper for
further details.
Figure 7 shows the true image (left) and the pixel-wise degraded version

(right). We specify a prior distribution by modelling the image on the pixel
lattice as an Ising Markov random field, with distribution

Pr (x) ∝ exp
θ

N2X
i=1

X
j∼i

δxi,xj

 (3)

where the sum over j ∼ i is a sum over all neighbours on the pixel lattice
and δa,b is the indicator function for the event a = b. In Fig. 8 we show the
MAP state along with the mean, a sample from the posterior and the marginal
posterior mode (MPM), for the smoothing parameters θ = 0.125, 0.25, 0.375,
0.5, 0.625. The MPM shows each pixel as the mode of the marginal distribution
of that pixel, and hence takes the value that the pixel most frequently took in
the samples drawn from the posterior. For the case of binary images, the MPM
is just the thresholded mean, xMPM = [xmean ].
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Figure 8: Tableau of maximum a posteriori (MAP) state, mean, a single sample
from the posterior, and the marginal posterior mode (MPM) for a range of
smoothing parameters θ.
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Note that as the smoothing parameter θ increases, xMAP becomes smoother
and goes from being a reasonable recovered image at θ ≈ 0.25, first loosing the
centre of the A, then the “legs” and finally, for all θ greater than some critical
value in the range (0.5, 0.675), xMAP = 1, i.e. the all-white state. The mean
image indicates that the position of the bulk of posterior probability mass,
clusters increasingly around better reconstructions as θ increases, with good
reconstructions for θ & 0.5. While the mean is not a feasible reconstruction for
binary images, for large θ & 0.5 it is “close” to the MPM which does provide
a good recovered image in that range. The sample images show what a typical
state from the posterior looks like.
The MAP state never looks like a typical state across the range of θ, and

for larger θ is something of an outlier. For θ in the range (0.125, 0.25) xMAP
gives a recovered image with the square feature beneath the A being present
and with the image not too spotty. But then one needs to choose θ carefully,
reflecting the standard practice of having to be particular about the smoothing
parameter in regularized inversion. At larger smoothing parameters, θ & 0.5 for
this example, when the prior is doing an excellent job of shaping the posterior
so that the bulk of posterior probability mass contains smooth images that
fit the data well and themselves make good reconstructions, the MAP state
is a hopeless reconstruction precisely because it is entirely unrepresentative of
typical samples. For θ & 0.675 this situation is extreme: Then the MAP state
is an extreme outlier and is completely useless, while the posterior is dominated
by states from which a good recovered image could be formed.
For the case of recovering a pixel-wise degraded binary image, we find that

regularized inversion does not give good reconstructions and shows sensitivity
to θ precisely because the single most-likely state is unrepresentative of the
bulk of feasible images. On the other hand the bulk of posterior probability is
clustered around good estimates of the true image and statistics that summarize
the posterior can achieve good image recovery that is insensitive to choices in the
prior such as our smoothing parameter θ. It is clear that such statistics exist for
this example, and we expect also for the majority of image recovery problems.
We conjecture that those properties of the MAP estimate occur in other image
recovery problems where the mode is not necessarily the mean. In other than
very special cases of these high-dimensional non-linear inverse problems, the
single most likely image (σML or σMAP) does not give good image estimates.
Since the forward map in our case is nonlinear, the posterior distribution will
in general be skewed, and so there is no reason that the mode should be sought
as an estimate of the coefficients of a PDE. Therefore, in non-invasive imaging
from strongly scattered waves it is vital to explicitly quantify the noise process
and the resulting set of feasible images, and to produce images based on the set
of all feasible images.
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4 Conductivity imaging via Statistical Inference

In this section we give a comprehensive example of solving the conductivity
imaging inverse problem using statistical inference.

4.1 Bayesian Formulation for Conductivity Imaging

We wish to recover a conductivity image given the current and electrical po-
tential measurements described in section 2. The unknown true currents and
potentials are not of direct interest, however the likelihood of any particular
conductivity image depends on them, and so we are obliged to make them ad-
ditional objects of inference. Since the true boundary current and boundary
potential are related by the inverse of the Dirichlet-to-Neumann map, Γσ, for
a given conductivity, σ, we need only parameterize a state by conductivity and
one of current or potential. We will use current. Let ρ(n) denote a generic
current distribution associated with the n’th measurement set, R the space of
generic currents, V and J the space of measured boundary voltages and currents,
respectively, so the data space is D = J, V .
Let P (σ, dρ|d) = Pr (σ, dρ|d) denote the posterior distribution for the un-

known conductivity and the unknown current. In terms of the likelihood and
prior,

P (σ, dρ|d) ∝ fD|Σ,R(d|σ, ρ)Pr (σ, dρ) .
To compute the likelihood of some conductivity image σ, and unknown true
current ρ(n) associated with the n’th measurement set, we must compute the
true boundary potential φ(n) = Γσ

¡
ρ(n)

¢
and compare φ(n) with v(n) and ρ(n)

with j(n). If noise on current and potential measurements are independent, then
their joint likelihood is

f
(n)
J,V |Σ,R(j

(n), v(n)|σ, ρ(n)) = f(n)V |Σ,R(v
(n)|σ, ρ(n))f(n)J|R(j

(n)|ρ(n))

For example, if all noise is i.i.d. Gaussian, with zero mean, and variances s2ρ
and s2φ are known,

j(n)|ρ(n) ∼ N(ρ(n), s2ρ),

v(n)|σ, ρ(n) ∼ N(Γσ (ρn) , s2φ),
and the likelihood is

fJ,V |Σ,R(j, v|σ, ρ) =
NY
n=1

f
(n)
J,V |Σ,R(j

(n), v(n)|σ, ρ(n)). (4)

Some prior distribution must be asserted for σ and ρ. For example, if the
conductivity is known to take one of two values throughout a pixel image of
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Figure 9: Two samples drawn from the prior distribution for conductivity.

conductivity values, and the current is asserted at E point electrodes, we might
represent our prior preference for σ and ρ by the Ising binary Markov random
field for σ (c.f. equation 3) and a uniform density on RE for the current.
Figure 9 show two samples drawn from the prior distribution for conductivity.
It can be seen that this prior prefers connected regions of a single value, with
the undesirable preference for vertical and horizontal edges. We use this prior as
an illustration, only, of what can be achieved using a simple model, and present
some more sophisticated models in section 5.
The joint posterior distribution, P (σ, ρ|j, v) ∝ fJ,V |Σ,R(j, v|σ, ρ)Pr(σ), then

gives the basis of all inference about σ (or ρ). To simplify our following pre-
sentation of algorithms, we suppose uncertainty in current measurements may
be ignored, and the conductivity image is the sole object of inference. The
posterior distribution becomes simply

P (σ|v) ∝ fV |Σ(v|σ)Pr(σ).
It is straightforward to remove this assumption within the framework we lay
out below.

4.2 Markov chain Monte Carlo

In the following discussion it is assumed that the conductivity at each pixel takes
one of a finite set of values. It is straightforward to generalize this treatment to
the case of continuously-valued pixel conductivities.
The expectation in equation 2 may be calculated using Monte Carlo integra-

tion as follows. If {Xt, t = 1, 2, . . . , n} are distributed according to the posterior
distribution, P (·|v), then

E [g (σ)] ≈ 1
n

nX
t=1

g (Xt) . (5)

The task then is to draw samples from the given posterior P (·|v). The Markov
chain Monte Carlo (MCMC) algorithm achieves sampling by generating {Xt}∞t=0
as a Markov chain of random variables Xt ∈ ΣΩ, with a t-step distribution
Pr(Xt = σ|X0 = σ(0)) that tends to P (σ|v), as t → ∞. Thus the algorithm
produces a random walk through the space of feasible images with the long-term
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probability that the walk will visit a particular image tending to the desired
posterior distribution.
The Metropolis-Hastings (MH) algorithm for generating such a Markov chain

of states is:

1. given state σtat time t generate candidate state σ0 from a proposal distri-
bution q (σ0|σt)

2. Accept candidate with probability

α (σ0|σt) = min
µ
1,
P (σ0|v)q (σt|σ0)
P (σt|v)q (σ0|σt)

¶
3. If accepted, Xt+1 = σ0 otherwise Xt+1 = σt

4. Repeat

The proposal distribution q (.|σt) can be any distribution that ensures the
Markov chain Xt, t = 0, 1, 2 . . . is irreducible and aperiodic. Since, by construc-
tion, the chain is reversible with respect to P (σ|v), it is ergodic with equilibrium
P (σ|v). In practice the efficiency of an MCMC algorithm depends on the pro-
posal distribution. In the next section we specify the proposal distribution that
we have used for conductivity imaging.

4.2.1 Three-Move Metropolis Hastings

At the proposal step of the MH algorithm, choose one of 3 “moves” with
probability ζp, p = 1, 2, 3. Each move specifies a particular way of modi-
fying the current state to produce a candidate state. Depending on which
move is chosen, a proposal distribution qp(σ0|σ) is determined. The corre-
sponding acceptance probability is given by setting q = qp in the above ex-
pression for α(σ0|σt). The algorithm thereby defines three transition probabil-
ities Pr(p)(Xt+1 = σt+1|Xt = σt), p = 1, 2, 3 corresponding to the three possi-
ble stochastic update types. These transition probabilities are reversible w.r.t.
P (σ|v). The overall transition probability is

Pr(Xt+1 = σt+1|Xt = σt)

=
3X
p=1

ζp Pr
(p)(Xt+1 = σt+1|Xt = σt).

If at least one of the moves is irreducible on ΣΩ, then the equilibrium distribution
is P (σ|v).
We have found the following set of moves effective for MCMC in an EIT

setting. A pixel n is a near-neighbour of pixel m if their lattice distance is
less than or equal to

√
8. An update-edge of conductivity image σ is a pair of

near-neighbouring pixels of unequal conductivity.
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Move 1 Flip a pixel. Select a pixel m at random and assign σm a new conduc-
tivity σ0m chosen uniformly at random from the set of allowed conductivity
values.

Move 2 Flip a pixel near a conductivity boundary. Pick an update-edge at
random from the set of current update edges. Pick one of the two pixels
in that edge at random, pixel m say. Proceed as in Move 1.

Move 3 Swap conductivities at a pair of pixels. Pick an update-edge hm,ni at
random from the set of update edges of the current state. Set σ0m = σn
and σ0n = σm.

4.3 Numerical Experiments

In this section we provide some numerical examples of calculating expectations
over the posterior distribution for conductivity imaging, using simple synthetic
data sets. The three examples correspond to different models for the conductiv-
ity. The examples come from Nicholls and Fox (1998) and interested readers are
directed to that paper for computational details. In each example we start with
a known conductivity distribution defined on a 25×25 pixel lattice, simulate
measurements at 16 electrode locations inside a strip of width 2 pixels neigh-
bouring the boundary, and then use MCMC with the forward map simulated
by solving the PDE on the pixel lattice to sample the posterior.
Figure 10 shows an experiment in which the true conductivity at each pixel

takes one of three values, and the same model is used for the recovered image.
Subfigure A shows the true conductivity. Subfigures B1 and B2 show samples
taken from the posterior distribution, generated by the Markov chain after burn
in. Because the states resemble the true image, it is reasonable to conclude that
the chain has reached equilibrium. Each of these samples correctly recovers the
main features of the true conductivity, in particular the background and the
two inclusions have the correct conductivity though there is some ambiguity in
the location of boundaries. The mean image, shown in subfigure C, is a good
estimator for the true conductivity — though it is not actually in allowable im-
age space. Subfigure D shows the pixel variance, with darker shades indicating
higher variance. This image shows that the background conductivity is essen-
tially determined while the diagonal boundary of the lower inclusion is not well
positioned.
Figure 11 shows a more realistic conductivity model that has two levels.

Each pixel is taken as coming from one of three types of material with each
material having a range of allowable conductivities. The material type is there-
fore equivalent to the conductivity model used in the previous example, but
the conductivity is not three valued. Subfigure A shows the true conductivity.
Subfigures B and C show a sample taken from the posterior distribution, where
B gives the material type and C gives the sampled conductivity based on B.
The mean conductivity image is shown in subfigure C, while subfigure D shows
the conductivity variance, with darker shades indicating higher variance. Again
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B1   B2   

C  D  

Figure 10: Recovering conductivity information for a synthetic data set with
three conductivity levels, computed from A. The simulation uses 16 electrodes,
with 4 evenly spaced on each side. Conductivities 1, 2 and 3 are black grey and
white respectively. The states in B1 and B2 are samples from the posterior, the
mean conductivity is shown in C, and pixel conductivity variance is shown in
D, where darker shades indicate greater variance.
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B  C  

D  E  

Figure 11: Recovering conductivity information for a synthetic data set, com-
puted from A with continuous conductivity pixel variables. Lighter shades indi-
cate higher conductivity. A two-level model is used consisting of a material type
model and a distribution of conductivity for each material type. The state in B
gives sampled reconstructed material type classifications while C gives sampled
reconstructed conductivity values. Mean conductivity values are shown in D,
and pixel conductivity variance is shown in E.

we see that the mean is a reasonable reconstruction with the ambiguity in the
reconstruction quantified by the variance image.
Figure 12 shows that certain conductivity patterns can screen internal struc-

ture. The true conductivity patterns in subfigures A and B are similar except
that in A the conductivities going inwards go medium-low-high (i.e. 2, 1, 3)
while in B the sequence is low-medium-high (i.e. 1, 2, 3).The lack of contrast in
the interior makes B harder to recover, which corresponds to the high variances
displayed in subfigure H.

5 Some image models

The nature of the MCMC algorithm makes it feasible in principle to use im-
age models, or parameterizations, that give image spaces that are discrete, or
disconnected, or even variable dimension. This allows a substantially broader
class of image models than can be handled by gradient-based optimizations tra-
ditionally used to implement regularized inversion. Since image representation
and specifying prior information are two faces of the same process, a signifi-
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Figure 12: Indications that shielding leads to increased uncertainty in sampled
reconstructed conductivity. Recovering conductivity information for a synthetic
data set with three conductivity levels. Subplot A gives true conductivity for
C,E, and G, while B gives true conductivity for D, F, and H. A, B: true con-
ductivity. C, D: sample reconstructed conductivity from posterior. E, F: mean
conductivity. G, H: pixel conductivity variance.
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Figure 13: A finite-element grid for a circular region showing the elements used
to model electrode placement.

cant advantage afforded by the richer choice of image models is that relatively
natural prior image information may be specified. For example it is relatively
straightforward to restrict allowable images to ones with a constant background
containing blob-like regions, and even restrict the number of blobs — though
there are difficulties in achieving a computationally efficient algorithm. The
ability to specify this type of prior information gives a substantial improvement
over the mathematically-expedient measures of image quality typically used in
regularization algorithms.

5.1 Finite-size electrodes

Imaging electrical conductivity from actual measurements requires accurate
modelling of the measurement process including details of electrode geometry
and contact. In this first example we show that a detailed finite-element model
may be used within an MCMC calculation. Figure 13 shows a finite-element
discretization used for imaging within a circular region, with the elements used
to model finite electrodes coloured black. In this example the circular region
has radius 1, the synthetic data was generated from an image with constant
background conductivity and a circular inclusion, having radius 0.1 centered at
coordinates (0,0.6), with twice the background conductivity. The image was
modelled as having one of the two known conductivity levels within each el-
ement, with an Ising-type prior, and the likelihood was calculated by solving
the PDE on the same finite-element mesh. Figure 14 shows output traces of
the sample prior and likelihood when the Markov chain was run from the ini-
tially constant, background, conductivity, while figure 15 shows a sample from
the chain after 4650 steps, when the chain appears to be in equilibrium. It is
interesting to note that the likelihood converges to its equilibrium distribution
more slowly than does the prior, showing that there are many states consistent
with the data that do not make good reconstructions, in the sense of the prior.
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Figure 14: Sample prior (top graph) and Likelihood. The horizontal lines give
the value of the prior and Likelihood of the true image.

Figure 15: Sample number 46500

The sample in figure 15 indicates that the circular inclusion has been found
though the spurious elements set to the higher conductivity shows that it is not
unambiguously defined.

5.2 Higher-level models

In each application area, the conductivity in the imaged region will typically
have some predictable form. For example, if we makes images of oranges we
may expect to see pips. How might this prior knowledge be used to inform the
reconstruction? In the Bayesian inferential framework the place for knowledge
of this kind is the prior probability distribution over some appropriate space
of conductivity functions. How should we define this space? The parameteri-
zation is most important, since the information we possess will be more easily
represented in some parameterizations than others.
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Figure 16: Intermediate level model: (A) data, 1746 resistivity readings over ne-
olithic hill fort, (B) posterior mean resistivity, (C) posterior edge length density,
(D1-3) samples from posterior.

In the language of the pattern recognition literature (Marr, 1982, Grenan-
der 1993) a pixel based representation of the conductivity image is a low level
parameterization. It is easy to represent local prior knowledge in this parame-
terization. For example we can write down a probability distribution favouring
locally smooth pixel-based images such as the Ising Markov random field.
An image representation based on regions bounded by variable polygonal

boundaries, which meet at vertices located in the plane continuum, is an exam-
ple of an intermediate level representation. In this example we should decide
on a set of basis functions to give the conductivity function over the polygonal
faces. Nicholls, (1998) gives a probability distribution on such random face-
coloured polygonal graphs, with piecewise constant face colouring, and uses it
in a Bayesian analysis of measured resistivity data. Figure 16 is taken from that
paper. It is easy in such an intermediate level parametrization to express con-
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straints on the topology of the graph of boundaries, which would be inconvenient
in a pixel-based representation.
Examples of high level parameterizations are given by Grenander and Miller

(1994) and Baddeley and van Lieshout (1993) who consider “object” processes.
The image model is a composition of unions of templates each representing
entire objects and having an associated group of allowable transformations or
deformations.

6 Summary

The Bayesian inferential framework provides a comprehensive analysis of in-
verse problems including consideration of the forward map, measurement pro-
cess and measurement error. Image modelling and inclusion of prior knowledge
are achieved through specifying a prior probability density over the image pa-
rameterization. The posterior density, being the product of likelihood and prior,
contains all information about the unknown image and is the sole focus of in-
ference.
Expectations over the posterior can be calculated using the MCMC algo-

rithm, giving a solution to the inverse problem (up to algorithmic efficiency).
Since the MCMC algorithm uses simulation of the forward map to evaluate the
likelihood (and not inverses of the forward map), if you can simulate the for-
ward map then you can sample and calculate expectations over the posterior,
i.e., ‘solve’ the inverse problem.
In high-dimensional inverse problems that are discrete and/or non-linear,

such as recovering the coefficients of a PDE from boundary measurements,
there is no reason that the mode of the posterior — traditionally reported in
regularized inversion — should represent the bulk of feasible images. We gave
an example where this single most-likely image is not a good reconstruction
and is an outlier in the set of feasible images. Hence in image recovery prob-
lems such as estimating the coefficients of a PDE, it is necessary to calculate
images that summarize the bulk of feasible images. This is the reason that
the extra machinery of Bayesian inference is required compared to, say, the
existing optimization-based regularization methods. Which summary statistics
give best reconstructions and the details of efficient algorithms remain open
questions. However, it seems likely that Bayesian inference will ultimately give
comprehensive solutions to the class of title problems.
Le Cam, the Berkeley satistician, purportedly dismissed inverse problems by

observing that: the forward problem is probability, and the inverse problem is
statistics. We concur with the analysis, but not the sentiment. There remains
much work to be done to make Bayesian inference into a robust off-the-shelf
technique for solving real imaging problems.
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