
Using Parallel MCMC Sampling to Calibrate a 
Computer Model of a Geothermal Reservoir

by

T. Cui, C. Fox, M. J. O'Sullivan and G. K. 
Nicholls

Report, Univeristy of Auckland, Faculty of 
Engineering, no. 686

ISSN 1178-360



Using Parallel MCMC Sampling to Calibrate a Computer
Model of a Geothermal Reservoir

T. Cui

The University of Auckland, Auckland, New Zealand.

C. Fox

University of Otago, Dunedin, New Zealand.

G. K. Nicholls

University of Oxford, Oxford, UK.

M. J. O’Sullivan

The University of Auckland, Auckland, New Zealand.

Summary. We introduce a novel parallel rejection scheme to give a simple but reliable way to
parallelize the Metropolis-Hastings algorithm. The algorithm is demonstrated by an application
of sampling the posterior distribution over eight parameters in a nonlinear numerical model of a
geothermal field to achieve model ‘calibration’ from measured well-test data. We explore three
scenarios using different training data subsets. Comparison across scenarios indicates model
error. Comparison of one scenario with a previous least-squares estimate for the same model
and data set shows that sample-based statistics give a more robust estimate than gradient-
based least-squares, in less compute time.
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1. Introduction

Methods based on Bayesian inference are now well established as a route to quantifying and
solving ill-posed inverse problems. Such methods have been applied to hydrology (Higdon
et al., 2002), electrical impedance tomography (Nicholls and Fox, 1998; Vauhkonen et al.,
1999; Watzenig and Fox, 2009) and many other areas. In a Bayesian formulation, the
solution to the inverse problem is found as expectations of interesting statistics over the
feasible range of parameters consistent with the measured data, which is quantified by the
posterior distribution.

Since inverse problems are commonly defined on a high dimensional parameter space
and the parameters have nonlinear interactions, the required integrals over the posterior
distribution are analytically intractable. Hence Markov chain Monte Carlo (MCMC) tech-
niques are required to explore the posterior distribution One of the major difficulties of
the MCMC techniques is that the evaluation of the posterior density at a given set of pa-
rameters requires a computationally intensive computer model simulation. To improve the
performance of sampling we introduce a novel parallel rejection scheme that parallelizes
the Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) (MH) algorithm. This
is achieved by parallelizing evaluations of the target density for proposed states that are
rejected. In contrast to other parallelization schemes, such as parallel tempering (Geyer,
1991) or parallel tempering using multilevel models (Higdon et al., 2002), this scheme does
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not require any modifications to the posterior distribution and treats the computer model
as a black box. It can be easily implemented on mainframe computers or multi-core work-
stations. The parallel rejection algorithm is given in Section 2.

In this paper we apply sampled-based inference to calibrate a geothermal reservoir model,
using the parallel rejection scheme. In geothermal reservoir engineering, computer models
are set up to represent the complex underground structure of a geothermal reservoir and used
to investigate future scenarios and management options. These computer models are based
on the numerical solution of the nonlinear partial differential equations which represent
mass conservation, energy conservation and Darcy’s law for the underground multiphase
flow. In our study, the integrated finite volume simulator TOUGH2 (Pruess, 1991) is used
to implement the computer model. Geothermal models need to be ‘calibrated’ by finding
the input parameters such as permeability, porosity and boundary conditions that fit to
measured data such as near-surface pressure and enthalpy. Calibrating computer models
of geothermal fields is difficult since model simulation is computationally expensive, field
observations are sparse, and the rock properties are highly heterogeneous and anisotropic.
These difficulties make the calibration process extremely time consuming and demanding
in terms of human input, as it may not be obvious how to adjust the structure of the model
to improve its fit with measured data.

Traditionally, calibration consists of making a point estimate of the parameters by best-
fitting to measured data, with subsequent model prediction conditioned on that point esti-
mate. The computer program ITOUGH2 (Finsterle, 1993) automates this process, imple-
menting a gradient-based optimization method to minimize the sum of squares of differences
between measured data and TOUGH2 simulated data. ITOUGH2 has been applied to cali-
bration of a few large-scale models of geothermal fields (Porras et al., 2007; Kiryukhin et al.,
2008) and also to simple models with few parameters using measured data sets from well
tests. Because of the strongly non-linear interaction between parameters in a geothermal
model, difficulties arise when the estimation involves many parameters or the computer
model is unstable (Roylance et al., 2003; Mannington et al., 2004). Then the data-misfit
function is characterized by local optima, extensive flat planes in multi-dimensional space, or
is sometimes discontinuous. These features present significant difficulties for gradient-based
optimization algorithms.

The use of stochastic algorithms, such as MCMC, actually overcomes many of the
difficulties associated with gradient-based optimization. In particular, the local minima
that cause global convergence to be virtually impossible to achieve with programs such as
ITOUGH2, present no difficulties to the MCMC that we use here.

We present an example of analyzing the pressure and enthalpy data from a geothermal
well measured during a discharge test. Traditionally, these data are used to estimate the
permeability of the underlying geothermal field. In our study, we aim to sample from the
posterior distribution over parameters conditioned on these data and construct a predictive
density to forecast pressure and enthalpy changes. The computer model uses a single
layer one dimensional radially symmetric model to simulate the pressure and enthalpy
response. There are total of 8 associated model parameters, which represent the unknown
permeability, porosity and unknown initial conditions. We also compare our results to a
previous estimate given by ITOUGH2 using the same data set (Finsterle et al., 1997).

This paper is structured as follows. The parallel rejection scheme is given in Section
2. In Section 3, we discuss the problem of geothermal model calibration, and its Bayesian
treatment including the proposal kernels used in the MH algorithm. Output statistics
obtained by sample-based inference are discussed in Section 4, along with a comparison to
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the calibration given by gradient-based optimization obtained by Finsterle et al. (1997).
We conclude with a discussion in Section 5.

2. Parallel Rejection Algorithm

We introduce an algorithm to decrease the CPU time per MCMC update by a straightfor-
ward parallelizing of the serial MH algorithm.

Consider the serial Markov chain {Xi}∞i=0 simulated using standard MH dynamics, at
state Xi = xi for some i. Suppose that n processors are available, that we take to be
independent for computing purposes. On each processor an independent instance of the MH
algorithm is run, initialized at state xi to give the n independent Markov chains {Yr,k}∞k=0 for
r = 1, 2, . . . , n with Yr,0 = xi. The resulting states are enumerated by t (r, k) = r+n (k − 1)
for r = 1, 2, . . . , n and k = 1, 2, . . . giving the total ordering t = 1, 2, . . .. Note that t is
an invertible function so the states on the parallel computer may be referred to by the
total ordering t, i.e. as {Yt}∞t=0. The n parallel chains are run until the first non-trivial
acceptance (in the ordering t) occurring at tmin, i.e. the minimum t for which Yt 6= xi. Then
set Xj = xi for j = i + 1, i + 2, . . . , i + tmin − 1 and Xi+tmin

= Ytmin
, and re-initialize the

n parallel chains. This algorithm is summarized in Algorithm 1. The same idea has been

Algorithm 1 Parallel Rejection Algorithm

1: Initiate n parallel chains {Yr,k}∞k=0 for r = 1, 2, . . . , n with Yr,0 = xi

2: Run until there is some tmin with Ytmin
6= xi AND Yt = xi ∀t < tmin in the ordering

t (r, k) = r + n (k − 1)
3: Set Xj = xi for j = i+ 1, i+ 2, . . . , i+ tmin − 1 and Xi+tmin

= Ytmin

used previously by Sohn (1995) in constructing a synchronous parallel version of simulated
annealing.

In practice, all our proposals are non trivial, so each of the parallel chains can be halted
after it has an acceptance, or when it is performing an iteration with index t greater than
an acceptance in another chain.

In the simplest case where time per MCMC step is constant, the speedup is achieved
because the serial chain is advanced m steps in time proportional to ⌊m/n⌋+1 rather than
time proportional to m. To estimate the performance of this algorithm, we assume each
accept/reject occurs independently with probability α of acceptance. For a fixed compute
time per process the speed-up factor is

ts
tp

=
1

α
(1− (1− α)n−1) (1)

where ts and tp are the time per update for serial and parallel Markov chain, respectively.
Since the transaction time (time spent on farming out slave processes) is linearly in-

creased as the process number increases, we need to consider that time as well. Let tt and
tF denote the transaction time and the time spent on solving the forward problem, respec-
tively. Then the speed-up factor is multiplied by (tt + tF)/(ntt + tF). Let tt/tF = ρ denote
the faction of transaction time compared to the time of calculating forward map. Then the
speed-up factor with transaction time can be written as

ts
tp

=
(1− (1− α)n−1)

α

1 + ρ

1 + nρ
. (2)
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Fig. 1. Speed-up factor for the parallel rejection scheme. (a) Theoretical speed-up factor for average
acceptance rates α = 0.01, 0.03, 0.05, 0.1, 0.3, 0.5 with ρ = 0.2. (b) Measured speed-up factor found
on the computer used. The average acceptance rates are α = 0.05 and 0.10.

Figure 1(a) shows the theoretical speed-up factor for relative transaction time ρ = 0.2
(this is roughly the value we measured on the computer we used), using n = 1, 2, . . . , 19
processors, with average acceptance rates α = {0.01, 0.03, 0.05, 0.1, 0.3, 0.5}. Note that
the speed-up factor actually decreases when the acceptance rate is high and the number of
processors is large.

To study the geothermal model calibration problem (see Section 3), we implemented
the parallel rejection scheme on a cluster, in which each node consisted of several CPUs
(2 or 4). The parallelization was achieved by a Perl script based on the Secure Shell. The
scalable parallel random number generators library (Mascagni and Srinivasan, 2000) was
used for random number generation. All the nodes on our cluster shared the same hard
disk which had timing implications since TOUGH2 requires disk input/output at each time
step to record thermodynamics information. Hence we could not utilize all the computing
resource as a large number of TOUGH2 process running at the same time compete with
each other for disk resources. We measured performance by using up to 19 CPUs with
proposal distributions set to give an acceptance rate of 5% and 10% (±1%). Figure 1(b)
shows that the measured speed-ups are consistent with our theoretical prediction, and is
slightly higher than the theoretical prediction when α = 0.1.

Hence, in this study, the optimal number of processes to use is about 5 which gives
a roughly three times speed up. The limitation on performance at greater number of
processors is mainly due to the large transaction time compared to the time required to
compute the forward map. When the transaction fraction is small, the potential speed-up
factor can be greater. Figure 2 gives a theoretical prediction of speed up factor for the case
ρ = 0.01. We can observe that, with low target acceptance rate (0.01), the parallel rejection
can speed up the MH algorithm by a factor of 30 when 50 processes are used. Such a low
acceptance rate is not uncommon in applications of MCMC to large inverse problems, and
so the parallel rejection algorithm makes a useful contribution in which computation of the
forward map needs no modification, as long a the relative transaction time can be kept
small.
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Fig. 2. Speed-up factor for the parallel rejection scheme with ρ = 0.01. The average acceptance
rates shown are α = 0.01, 0.03, 0.05, 0.1, 0.3, 0.5.

3. Calibration of a Geothermal Model

3.1. Data Simulation
Multiphase non-isothermal flow in a geothermal reservoir can be simulated using the TOUGH2
code (Pruess, 1991). In TOUGH2, two phase flow (water and vapour) is modelled by general
mass balance and energy balance equations. For an arbitrary subdomain Ω with bounding
surface ∂Ω, the balance equations can be written in the form

d

dt

∫

Ω

M dV =

∫

∂Ω

Q · n̂ dΓ +

∫

Ω

q dV. (3)

The accumulation term M represents mass (Mm) or energy (Me) per unit volume, defined
by

Mm = φ (ρlSl + ρvSv),

Me = (1− φ) ρrcrT + φ (ρlulSl + ρvulSv). (4)

Here φ is porosity, ρ is density, S is saturation, u is specific internal energy, c is specific
heat and T is the temperature. The subscripts l, v and r indicate the quantities pertaining
to liquid, vapour and rock, respectively. Note that: Sl + Sv = 1.

The mass flux term is given as a sum over liquid and vapour phase:

Qm =
∑

β=l,v

kkrβ
νβ

(▽p− ρβ~g). (5)

Here k is a diagonal second order permeability tensor in 3-dimensions, ~g represents the
acceleration due to gravity, ▽p is the pressure gradient acting on the fluid flow, and νβ
is the kinematic viscosities. Relative permeability krβ is introduced to account for the
interference between liquid and vapour phases as they move through the rock matrix in
the geothermal reservoir. There are several empirically derived curves available to model
krβ as functions of vapour saturation Sv. We use the van Genuchten-Mualem model (van
Genuchten, 1980) with Srv = 0, defined by:

krl =

{ √
S∗

{

1−
(

1− [S∗]
1/m

)m}2

if Sl < Sls

1 if Sl ≥ Sls,
(6)
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where

S∗ = (Sl − Srl)/(Sls − Srl);

krv =

{

1− krl if Srv = 0
(

1− Ŝ
)2 (

1− Ŝ2
)

if Srv > 0,
;

Ŝ = (Sl − Srl)/(1− Srl − Srv);

subject to the restrictions

0 ≤ krl, krv ≤ 1,

Srl + Srv < 1,

Srl < Sls. (7)

Except for the hyperparameters m, Srl, Sls and Srv, all the remaining parameters in the
van Genuchten-Mualem model are components of the state of the geothermal system.

Energy is carried by the movement of steam and water, and by thermal conduction.
Hence the energy flux is given by

Qe =
∑

β=l,v

kkrβ
νβ

(▽p− ρβ~g)hβ −K▽T. (8)

Here h denotes specific enthalpy and K is the thermal conductivity in a saturated medium.
The accumulation term q in (3) represents the mass and heat sources or sinks in region

Ω. The thermolphysical properties of liquid water and steam (such as density, viscosity,
specific internal energy, specific heat and specific enthalpy) are calculated using steam table
equations given by the International Formulation Committee (1967).

Spatial discretization of (3) is based on an integrated finite difference or finite volume
method, which is implemented in the existing Fortran code TOUGH2. To guarantee the
numerical stability of simulation, TOUGH2 uses a fully implicit method for numerical in-
tegration in time, and upstream weighting for calculating the velocity of fluid movement
between adjacent blocks (in (5) and (8)). For each time step, the Newton-Raphson method
is used to solve the resulting system of non-linear difference equations. TOUGH2 uses
a preconditioned iterative sparse matrix solver for solving the linear equations at each
Newton-Raphson iteration (see Pruess, 1991).

As mentioned above, our inference is based on samples drawn from the posterior dis-
tribution over field parameters conditioned on pressure data and flowing enthalpy data
measured at the well head during a well discharge test. We model the geothermal field as
a single layer radially symmetric model with homogeneous rock properties. The model is
located at a depth of about 1600 meters which corresponds to the feed zone of the well.
Figure 3 shows a wedge of the computational grid of the model. The well is located in the
central block shown at the vertex of the wedge, 10 small blocks are used adjacent to the well,
followed by 65 blocks with a thickness expansion factor of 1.2. Because the volume of each
outer block is large the temperature and pressure in those blocks do not change during the
simulation, and hence can be viewed as providing a model with effectively infinite extent.
On a 3.0 GHz Pentium 4 processor, roughly 20 seconds is required to simulate the system
response for 100 days of operation.

The numerical simulation generates ‘down hole’ values whereas observed data are mea-
sured at the well head. While the energy loss and enthalpy change along the well bore are
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Fig. 3. Finite volume grid for the well discharge test model. The top figure gives the overview of (a
wedge from) the single-layered one-dimensional radially-symmetric model. The bottom figure shows
the first five blocks; the well located in the first block.

not large, the pressure drop is significant. Accordingly, we introduce a pressure shift param-
eter variable ps to model this difference. Since the model is assumed to be homogeneous,
there is only one porosity value and one permeability value in the radial direction that need
to be estimated. The initial vapour saturation (Sv0) and initial pressure (p0) are used to
represent the initial thermodynamics state of the two phase system, but are not known in
advance. Together with the parameters from the relative permeability model, these make
up the eight unknown parameters for the data simulation:

θ = (φ, log10(k), p0, Sv0, ps,m, Srl, Sls) . (9)

Note that the permeability k is represented on a base 10 logarithmic scale.

3.2. Observed Data and Likelihood Function
We analyze a measured data set in which production rate, flowing enthalpy, and wellhead
pressure data were observed during a period of 140 days. The data is shown in Figure 4(a).
The well was shut down three times (see Figure 4(a)), for 2 days around day 50, one day at
day 55, and for 5 days around day 100. After day 105, the production rate was increased
from about (minus) 4 kg/s to about (minus) 10 kg/s.

In our TOUGH2 model, the simulation could not continue with a low permeability value
(k < 1 millidarcy) after day 105 because the model pressure dropped below atmospheric
pressure which is not permitted in TOUGH2. As shown later, to match the data before day
105, the feasible range of permeability is usually below 1 millidarcy (i.e. log10(k) < −15).
Figure 4(a) shows that the production rate drops between day 85 to day 95, while the
pressure drops in this period as well. This effect may be caused by interaction with other
wells, which is not included in our 1D model. Further, TOUGH2 is not able to simulate
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Fig. 4. (a) Data used for the well discharge test analysis. The top, middle and bottom plot corre-
sponding to the pressure, the flowing enthalpy and the production rate, respectively. (b) Production
rate from day 20 to day 60. Top: histogram of second differences. Middle: traditional linear inter-
polation between data points; interpolated data points (see text) are shown by crosses. Bottom:
interpolation of measured production rate used in this study.

the steep rise in the enthalpy data and the increase in the pressure data from day 0 to day
10. Thus, our analysis is based on the data collected from day 14 to day 84.

The production rate qm is also recorded during the well discharge test at 24 hour inter-
vals. The rate change within this interval is not specified. We found that the production
rate at some points had been linearly interpolated from the adjacent measured data points.
The top plot of Figure 4(b) is the histogram of the second difference of production rate data
with respect to time, △2qm shown on a base 10 logarithmic scale. Data points with second
difference less than 10−10 are certainly the product of linear interpolation of neighbouring
measured points, hence contribute no extra information. The middle plot of Figure 4(b)
shows the original production rate (from day 20 to day 60), the crosses are the data points
with a small second difference (< 10−10). These points are discarded in our analysis, so do
not contribute to the likelihood.

The middle plot in Figure 4(b) also shows the traditional linear interpolation of pro-
duction rate between measured data points. In a previous study, Finsterle et al. (1997)
analyzed the same data set using a linearly interpolated production rate; the results are
shown later in Figure 9. From those plots we observe a sudden pressure and enthalpy change
around day 55 resulting from the shutting down of the well around day 55 (see Figure 4(b)).
In our analysis we found that when the permeability is low, the use of linear interpolation
of production rate may shift down the enthalpy and bring the pressure up after day 55.
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Table 1. The training data subsets for each of the
three scenarios used to analyze the well discharge
test. Columns labelled σh and σp give the esti-
mated standard deviations of flowing enthalpy and
well head pressure, respectively.
Scenario Training Data σh [kJ/kg] σp [bar]

S1 {14-19, 35-52} 50 3
S2 {14-19, 53-69} 50 3
S3 {14-84} 100 6

This effect can be overcome by an alternative interpolation which treats the data points
(bottom plot of Figure 4(b)) as the value of a step function. That interpolation is consistent
with the interpretation that production rate is set for each 24 hours rather than being a
measurement of a smoothly varying quantity.

We denote the observed data as ~̃y =
(

~̃h, ~̃p
)

, where ~̃h and ~̃p are observed flowing enthalpy

and well head pressure, respectively. Conditional on the unknown parameter θ, we specify
a Gaussian measurement error of the form:

L(~̃y|θ) ∝ exp

{

−1

2

[

(~̃h− ~h(θ))
′

Σ−1
h (~̃h− ~h(θ))

]}

× exp

{

−1

2

[

(~̃p− ~p(θ))
′

Σ−1
p (~̃p− ~p(θ))

]

}

, (10)

where ~h(θ) and ~p(θ) are the model output for parameter θ. The covariances of flowing
enthalpy Σh and covariances of well head pressure Σp are fixed constant. Because the data
observations are fairly even spaced, we assume that Σh = σ2

hIn and Σp = σ2
pIn. The actual

choice of standard deviations σh and σp are estimated from the residual of a smoothed

spline interpolation of the time series data ~̃h and ~̃p.
We divide the observed data from day 14 to day 84 into 5 sets (see Figure 4(a)). We

perform two analyses using different partitions of observations for training with the remain-
ing observations used for validation. Also, an analysis with all the observations used for
training is conducted to compare with the results of the previous study by Finsterle et al.
(1997). Table 3.2 shows the three scenarios we analyzed and the observations used for each
scenario.

3.3. Prior Modelling
We used expert knowledge and physical constraints to define bounds on the allowable range
of each component of the parameter θ, and within that defined weak subjective prior den-
sities. For example, the value of porosity is necessarily between 0 and 1, and commonly
less than 0.5. To formulate such weak prior information into a functional form, we use a
modified exponential distribution of the form

π(x) ∝ x

s

(

1− x

s

)

exp
(

ι
x

s

)

. (11)

Here s scales the parameters into the range (0, 1) and ι is a non-zero constant which control
the skewness of the distribution, setting the region of the mode. The density for various
choices of ι are shown in Figure 5.
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Fig. 5. Plot of π(x) for different choice of ι, where ι = −10,−5, 5, 10.

Table 2. The bounds for different components of parameter θ and
the different choice of skewness parameter ι.

φ[-] m [-] Srl [-] Sls [-] Sv0 [-] p0 [bar] ps [bar]

U.B. 1 1 1 1 1 250 150

L.B. 0 0 0 0 0 50 50

ι -5 5 2 10 -10 -2 -2

Table 3.3 summaries the physical constraints and bounds that we used for each com-
ponent of the parameter θ, and the different choices of ι for each component, except the
permeability k. Note that the constraints (7) in the van Genuchten-Mualem model is also
included in the prior distribution. We make the prior density over permeability invariant
with respect to changes of unit by specifying a uniform density over a logarithmic scale
(Jaynes, 1968). It is not necessary to truncate the range of allowable permeability values
to make the prior proper as the range is effectively constrained by the likelihood function.

3.4. Posterior Exploration
We explore the posterior distribution

π(θ|~̃y) ∝ L(~̃y|θ)πpr(θ)

by MCMC sampling using MH dynamics, parallized by the parallel rejection scheme in
Algorithm 1.

To propose a new candidate parameter θ′, we build L different proposal distributions
q(i)(θ′|θ), i = 1, . . . , L. Let Kq(i)(θ

′, θ) be the MH transition kernels with q(i)(θ′|θ) as a
proposal, and let ζi, i = 1, . . . , L, be the probability of choosing kernel i. Then the overall
transition kernel is given by

K(θ′, θ) =

L
∑

i=1

ζiKq(i)(θ
′|θ). (12)

We find the following L = 3 proposals are are sufficient to give good mixing and ensure
ergodicity of the Markov chain over useful time scales. Within each proposal we select a
subset θI of components of the parameter θ to update, where I represents a set of indices.
The proposals are:

Translate: Translate θI by λ ∼ U(−ǫ, ǫ): θ′I = θI + λ.

Scale: Scale θI by λ ∼ U(1/ǫ, ǫ): θ′I = λθI .
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Shoot: Draw a two dimensional random vector

λ ∼ U(−ǫ1, ǫ1)× U(−ǫ2, ǫ2),

then update the two dimensional vector θI by

θ′I = θI +

(

cos(γ) sin(γ)
− sin(γ) cos(γ)

)

λ,

where γ is a given angle.

The translation proposal operates on one randomly selected component from {log10(k), Srl, φ},
which is selected with probability {0.4, 0.4, 0.2}. The scaling proposal randomly selects one
parameter from {φ,m} with probability {0.473, 0.526}. The shooting proposal updates a
two dimensional subset of parameters selected uniformly at random from {{p0, ps}, {Sls, Sv0}},
and a shooting angle of π/4 is used for both subsets. The Jacobian determinant in the MH
algorithm for translate and shoot proposals is 1, and is λ−2 for the scale proposal. We select
one of the kernels with probability ζ = {0.45, 0.19, 0.36}. These three kernels are sufficient
to ensure the resulting Markov chain is aperiodic and irreducible, and hence standard results
guarantee that the resulting reversible chain has the desired ergodic properties.

4. Computed Results

We ran the MCMC simulation for about 60,000 iterations for each of the scenarios given in
section 3. The computing time for scenario S1, S2 and S3 were roughly 20 hours, 60 hours
and 90 hours, respectively. Figure 6, 7 and 8 shows summary statistics of predicted well
head pressure and flowing enthalpy for each scenario. The predictive density at each time
looks Gaussian, hence we calculate sample means and standard derivations to summarize the
prediction. The posterior means are shown as a solid line, while the posterior uncertainty
is shown by the shaded region with width ±3 standard deviations.

The squares in Figure 6, 7 and 8 indicate data used for training, while triangles are
data used for validation. Scenario S1 produces a larger error band in both pressure and
enthalpy predictions after day 52, and both predictions are flatter than the observed data.
The maximum mismatch in pressure and enthalpy are about 20 bars (too high) and 200
kJ/kg (too low), respectively. Scenario S2 used the data between day 53 and day 69 for
training which has larger variation; Correspondingly S2 produces a much tighter predictive
interval that covers the observed data better than S1. Since all the observed data points are
used for training in scenario S3, that scenario effectively implements model-based smoothing
and provides an even tighter prediction interval than S2 with the model output uncertainty
intervals covering the observed data reasonably well.

Figure 6, 7 and 8 show the marginal distributions for each component of θ, and show
that there exists strong negative correlation between initial vapour saturation (Sv0) and Sls.
In the scenario S1, there is some negative correlation between log10(k) and p0 and strong
negative correlation between p0 and ps. In the scenario S2, both pairs log10(k), p0 and p0, ps
are strongly correlated, whereas log10(k), p0 and ps are negatively correlated in scenario S3.

The summary statistics for these three scenarios show that the mean prediction and
uncertainty intervals are different when different training data sets are used. Together with
the plots of the marginal distributions for each component of θ (Figure 6, 7 and 8), we can
conclude that the posterior distribution conditioned on the different training data sets have
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different shapes, and modes in different regions of the parameter space, even though the
data sets are measured from the same physical process. That clearly indicates that there is
appreciable modelling error, i.e., that there is a discrepancy between the computer model
used for simulation and the physical process being measured.

We also compare our analysis with the previous study by Finsterle et al. (1997) who cal-
ibrated the same TOUGH2 model based on the the same observed data from day 10 to day
85 (our scenario S3) using gradient-based optimization implemented in ITOUGH2; their
result is shown in Figure 9. Our scenarios S2 and S3 produce better mean estimation of
both pressure and enthalpy output, and provide a more accurate uncertainty interval that
is based on the posterior distribution rather than an ad hoc Gaussian assumption. The
estimated parameter of Finsterle et al. (1997) is compared with our posterior distribution
of scenario S3 in the Figure 8, the red lines in the histograms show their least-squares esti-
mate of parameter values. We can observe that the least-squares estimates of permeability
log10(k), the van Genuchten parameter m, and the constant pressure shift ps all lie out of
the significant support of their marginal distributions. This gives evidence that the gradient
based optimization has converged to a local minimum, which in this case lies in a region of
very low posterior probability.

5. Discussion

In this paper we used a practical sample-based method to calibrate a simple model of a
geothermal field. The parallel rejection version of the Metropolis-Hastings algorithm was
introduced to decrease the CPU time per acceptance in MCMC sampling.

To make model predictions and to be able to quantify the uncertainty in prediction,
the posterior distribution over the model parameters conditioned on observed data is used
in our study. In Section 4 our predictive density shows a more robust and accurate result
than the traditional least-squares estimate, and the MCMC sampling is not limited by the
difficulties associated with gradient based optimization such as local minima. As intimated
in the introduction, ITOUGH2 users need to restart the search many times to find the
global optima and the gradient can only be numerically evaluated. Overall, we found that
ITOUGH2 is computationally slower than MCMC in this study.

By comparing the three scenarios that we analyzed we find that the inversion result is
significantly improved when data collected between day 53 and day 69 are used. This set of
data corresponds to an increased production rate during the same period, the production
rate (Figure 4(b)) is increased from about (minus) 3 kg/s to more than (minus) 4 kg/s
after day 52. If all the training data is from one regime (in scenario S1, all the data are
measured with low production rate), the model could not reproduce the system behavior
across different regimes, i.e., give predictions after day 53. When data sets from both
regimes are used (as in scenario S2) the solution behaves more like an average through
the different regimes, hence it could follow the trend of observed data well. This suggests
that including training data from different regimes is more important than the amount of
data used in training. This behaviour also indicates that our computer model does not
completely mimic the physical system.

We have demonstrated that sample-based inference using MCMC sampling is a potential
means of calibrating numerical models of geothermal fields with few (tens of) parameters.
The MCMC sampling technique presented here outperformed gradient-based optimization
both in terms of quality of calibration and, perhaps surprisingly, in computational speed.
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Fig. 6. Results and output analysis for scenario S1. (a) The prediction result: pressure (top) and
flowing enthalpy (bottom). The black lines are mean prediction and the gray bands are uncertainty
intervals. The squares and triangles are training data points and validating data points, respectively.
(b) Trace of log-likelihood (top) and autocorrelation of log-likelihood (bottom). (c) Histogram of the
marginal distribution for φ, m, Srl, log10(k), p0 and ps. (d) Scatter plot of the joint marginal distribution
over log10(k), p0 and ps. (e) Histogram for the marginal distribution of Sv0 and Sls and scatter plot of
their joint marginal distribution.
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Fig. 7. Results and output analysis for scenario S1, with same plots as Figure 6.
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Fig. 8. Results and output analysis for scenario S3, with same plots as Figure 6. The red lines in
the histograms in (c) and (d) mark the least-squares estimates reported by Finsterle et al. (1997).
The least-squares estimates they reported for permeability log10(k)was -14.48, and for m was 0.408;
these estimates lie off the ordinate range of the histograms. They did not report the least-squares
estimate for Sls.
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Fig. 9. Results of the analysis on the same problem (as our S3) obtained by Finsterle et al. (1997).
The squares and triangles are observed data used for calibration and validation, respectively. The
solid lines show the best fit obtained by ITOUGH2, and the regions bounded by the dashed lines are
the uncertainty interval.

We are currently extending this investigation to examples that require many thousands of
parameters. In those cases gradient-based optimization is known to be ineffectual, while
MCMC based calibration looks promising, though computationally demanding.
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