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Summary. We present a new adaptive delayed-acceptance Metropolis-Hastings algorithm
(ADAMH) that adapts to the error in a reduced order model to enable efficient sampling from
the posterior distribution arising in complex inverse problems. This use of adaptivity differs
from existing algorithms that tune proposals of the Metropolis-Hastings algorithm (MH), though
ADAMH also implements that strategy. We build on the recent simplified conditions given by
Roberts and Rosenthal (2007) to give practical constructions that are provably convergent to
the correct target distribution. The main components of ADAMH are the delayed acceptance
scheme of Christen and Fox (2005), the enhanced error model introduced by Kaipio and Som-
ersalo (2007) as well as recent advances in adaptive MCMC (Haario et al., 2001; Roberts
and Rosenthal, 2007). We developed this algorithm for automatic calibration of large-scale
numerical models of geothermal reservoirs. ADAMH shows good computational and statistical
efficiencies on measured data sets. This algorithm could allow significant improvement in com-
putational efficiency when implementing sample-based inference in other large-scale inverse
problems.
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1. Introduction

1.1. Overview
We present an adaptive delayed acceptance Metropolis-Hastings algorithm (ADAMH) to
enable efficient sampling from the computationally expensive posterior distributions that
occur in large scale inverse problems. Given a physical system, the inverse problem com-
monly arises from reconstructing some quantities of interest from measurable features of
the system which indirectly relates to the quantities of interest. Formally, a forward model
is used to describe the physical system, and the quantities of interest are parametrized by
model parameters. Hence the measurable features of the system can be predicted by the
forward model given a set of model parameters. The corresponding inverse problem consists
of inferring the model parameters from a set of field measurements of those features.

The unknowns of the interested physical system are usually spatially distributed quanti-
ties, e.g. permeability distribution of subsurface fluid transportation model (Higdon et al.,
2003; Cui, 2010), resistivity/conductivity field of impedance imaging (Vauhkonen et al.,
1999; Andersen et al., 2004; Watzenig and Fox, 2009), and flow field of ocean circula-
tion (McKeague et al., 2005). These spatially distributed parameters can be considered
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in the form of images, and hence techniques developed in statistical image analysis, such
as Grenander (1967, 1976, 1981); Geman and Geman (1984); Besag (1986); Grenander
and Miller (1994); Besag et al. (1995); Hurn et al. (2003), can be applied to solve inverse
problems. In particular, we formulate the inverse problem into the Bayesian inferential
framework, which offers a coherent and rigorous foundation for solving the inverse problem
by accounting various sources of uncertainties in the data modelling process, and incor-
porating prior information. Based on the posterior distribution, answers to the inverse
problem, such as parameter estimation, uncertainty assessment, and model prediction are
calculated from the mean, modes, or higher oder moments of statistics of interest over the
posterior.

Historically, Bayesian image analysis put a great emphasis on prior modelling of the
image, extensive investigations have been carried. These include Gaussian Markov random
field models (Besag, 1986; Kuensch, 1987; Besag et al., 1991; Besag and Kooperberg, 1995;
Higdon, 1998; Rue and Held, 2005) and Gaussian process models (Cressie, 1993) that have
been developed for low-level pixel based representation, intermediate-level modelling that
based on continuous random partition of a plane (Arak et al., 1993; Green, 1995; Moller
and Plenge Waagepetersen, 1998; Nicholls, 1998; Moller and Skare, 2001), and object based
high-level modelling such as deformable template approaches of Amit et al. (1991); Bad-
deley and van Lieshout (1993); Grenander and Miller (1994); Jain et al. (1998); Rue and
Hurn (1999). In comparison with the effort put into prior modelling, the data modelling
is a rather neglected area in Bayesian image analysis. However, this is crucial to the cred-
ibility of the inference results in physical applications, because constructing the likelihood
function requires a forward model that accurately describes the map from the image to the
measurements. Some works on using physical models in the Bayesian image analysis can
be found in impedance imaging (Nicholls and Fox, 1998; Andersen et al., 2004), ultrasound
imaging (Husby et al., 2001), and emission tomography (Green, 1990; Higdon et al., 1997;
Weir, 1997). The resulting high dimensional posterior distribution are sampled by Markov
chain Monte Carlo (MCMC), and then the estimations can be calculated by Monte Carlo
integration over samples.

In real applications of the inverse problem, the forward model usually consists of a set of
non-linear governing partial differential equations (PDE) and its numerical implementation.
Difficulties on applying MCMC sampling to inverse problems arise from the high dimen-
sionality of the model parameters, and computational demands of numerical simulations of
forward models. Unlike most of the problems in Bayesian image analysis, where the high
dimensionality is not necessarily an issue because the posterior distributions are trivial and
millions of MCMC iterations can be carried out. Each of the forward model simulation of
a typical inverse problem requires the order of minutes to hours of CPU time to evaluate.
In practice, it is computationally prohibitive to run MCMC for many number of iterations.
Hence the feasibility of applying MCMC to solve inverse problems is greatly constrained
by the computing time of the forward model. Even though there are few comprehensive
studies on posterior sampling of large scale inverse problems, include the work on retrieving
ocean circulation field (McKeague et al., 2005), retrieving fields of wind vectors (Cornford
et al., 2004), recovering atmosphere gas density (Haario et al., 2004), and characterising
subsurface properties of aquifers and petroleum reservoirs (Oliver et al., 1997; Higdon et al.,
2002, 2003; Mondal et al., 2010).

The massive scale of computation in each of these examples indicate that considerable
improvement of sampling efficiency of MCMC algorithms for inverse problems is necessary.
Recently, several investigations on the improvement of sampling efficiency have been carried
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out, includes the adaptive Metropolis algorithm (AM) of Haario et al. (2001), the delayed
rejection AM algorithm (DRAM) of Haario et al. (2006), the differential evolution Monte
Carlo algorithm (DEMC) developed by Ter Braak (2006), and many other adaptive MCMC
algorithms (e.g., Atchade and Rosenthal, 2005; Andrieu and Moulines, 2006; Roberts and
Rosenthal, 2009). These algorithms focus on optimizing the proposal distributions of MH to
efficiently traverse the parameter space. For computationally fast models that require in the
order of one minute to simulate, the above algorithms can adequately explore the posterior
distribution in the order of one hundred thousands iterations within a week of computing
time. However, it is still computationally prohibitive to apply MCMC for computationally
expensive models that may requires hours to simulate.

The ADAMH algorithm we presented here employs a computationally fast approximate
posterior distribution (also referred to as approximation) to reduce the computing time per
iteration of the MCMC sampling. The approximation is based on a reduced order model
(ROM) that approximates the behavior of the accurate forward model, and adaptively tuned
by ADAMH to accommodate the model reduction error. This use of adaptivity improves the
accuracy of the approximation on-line, and differs from existing adaptive MCMC algorithms
(Haario et al., 2001; Atchade and Rosenthal, 2005; Andrieu and Moulines, 2006; Roberts
and Rosenthal, 2007, 2009) that tune random walk proposals, though this strategy is also
implemented by ADAMH.

The ROM plays a central role in numerical analysis on reducing the computational cost of
the numerical models, while retain the basic features of the original numerical model. There
are many possible ways to construct a ROM, common approaches include coarsening the
grid structure of the numerical model (e.g., Christie and Blunt, 2001; Kaipio and Somersalo,
2007), linearizing the forward model (e.g., Christen and Fox, 2005), and projection methods
(e.g., Grimme, 1997; Li, 2002). Computer experimental design community have also applied
Gaussian process models to construct emulators of the numerical models (Sacks et al., 1989;
Welch et al., 1992; Morris et al., 1993; Kennedy and O’Hagan, 2001; Santner et al., 2003;
Bayarri et al., 2007; Higdon et al., 2008; Gramacy and Lee, 2008). However, this approach
is constrained by the dimensionality of the parameter space, and usually have difficulties in
dealing with the extremely high dimensional parameters in inverse problems. In analysing
the geothermal reservoir modelling problem, we construct the ROM by coarsening the grid
structure used by the forward model, see Section 4.

ROM has been employed by several researchers to perform fast MCMC sampling. For
example, Higdon et al. (2003) developed a Metropolis coupled MCMC scheme that simul-
taneously runs chains for models that have different levels of grid resolution. Information
from the faster running coarse formulations speed-up the mixing of the finest scale chain,
from which samples are taken. Lieberman et al. (2010) employed a projection based ROM
to construct an approximate posterior density on a reduced parameter space, and then
samples are drawn from the approximate posterior distribution directly. ADAMH aims at
sampling directly from the exact posterior distribution, and uses the ROM in a different way,
within the framework of the delayed acceptance Metropolis-Hastings algorithm (DAMH) of
Christen and Fox (2005).

In the first step of DAMH, an approximation is used to pre-compute the acceptance
probability of proposals as in MH, then a second step evaluation of the exact posterior
density only occurs for the proposals accepted in the first step. Here, a modified acceptance
probability is used in the second step for ensuring the ergodicity of the Markov chain. This
two step MCMC scheme is very similar to the “surrogate transition” method (e.g., Liu, 2001,
Section 9.4.3). However, the “surrogate transition” method only allows the use of a state
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independent approximate posterior distribution, while one of the most important feature of
DAMH is that it can deal with a more general form of approximation that includes both
the state-dependent and state-independent cases. The extensive numerical experiments in
Cui (2010) show that using a properly designed state-dependent approximation results in a
significant improvement in the sampling efficiency compared to state-independent approxi-
mations.

The main disadvantage of the ROM is that it usually has a non-negligible discrepancy
with the accurate model. In building the approximate posterior distribution, ignorance
of the statistics of this model reduction error would result in a biased estimation. In
DAMH, this would causes a very low acceptance rate in the second step, and hence a
poorly mixed Markov chain. ADAMH implements a modified version of the enhanced error
model (EEM) of Kaipio and Somersalo (2007) to estimate the model reduction error, and
allows for constructing the approximation that adapts to the model reduction error.

We first validate ADAMH on a 1D homogeneous geothermal reservoir model with
synthetic data. Then, ADAMH is applied to the estimation of the heterogeneous and
anisotropic permeability distribution and the heterogeneous boundary conditions of a 3D
steady state model of a two phase geothermal reservoir. There are about 104 parameters
in our model, and each model simulation requires about 30 to 50 minutes of CPU time,
which makes it virtually impossible for the standard MH algorithm to be applied. ADAMH
shows a great enhancement in the sampling efficiency, and achieves a speed-up factor about
7.7 compare to the standard MH. We are able to run 11,200 iterations in about 40 days.
The sampling results show good agreement between the estimated temperature profiles and
the measured data. We expect that ADAMH will produce significant improvement in com-
putational efficiency when applied to sample-based inference in other large scale inverse
problems.

1.2. Outline of this paper
Section 2 provides a brief review of the Bayesian inference for inverse problems and the asso-
ciated computational issues, including a discussion of DAMH and EEM. Section 3 reviews
adaptive MCMC algorithms of Haario et al. (2001); Roberts and Rosenthal (2009), and
presents the ADAMH algorithm and several adaptive approximations. Section 4 presents
two case studies of ADAMH on calibrating two geothermal reservoir models. Section 5
offers some conclusions and discussions.

2. Bayesian inverse problems and computation

2.1. Bayesian formulation of inverse problems
Suppose a physical system is represented by a forward model F (·), and the unknowns of the
physical system are parameterized by model parameters x. Given a set of model parameters,
the forward model produces outputs d = F (x), which represents the measurable features of
the system. In solving a inverse problem, we wish to recover unknown x from measurements
d̃, and to make future prediction about the output of the physical system.

Because the parameters of interest such as permeabilities are usually spatially distributed
and highly heterogeneous, and field data are only able to be sparely measured, recovering
the parameters from field data is an ill-posed inverse problem (Hadamard, 1902; Kaipio and
Somersalo, 2004). Ill-posedness means that there exist a range of feasible parameters that
are consistent with the measured data, and hence a range of possible model predictions.
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In a Bayesian framework, this consistency is quantified by the posterior distribution which
provides the relative probability of a set of parameters being correct. Thus, the assessment
of parameters and model predictions can be performed by summarizing information over
the posterior distribution.

In oder to formulate the posterior distribution, it is necessary to build the prior model
of unknown parameters and the likelihood function. Formulating the prior distribution
π(x) requires stochastic modelling of the unknowns. This is typically derived from expert
knowledge of allowable parameter values, previous measurements, modelling of processes
that produce the unknowns, or a combination of these. The parametrization of unknowns
is a composite part of prior modelling, since expressing certain types of knowledge is simpler
in some representations than others, and solutions that cannot be represented are excluded.
For inverse problems with spatially distributed parameters, representations and prior dis-
tributions are usefully drawn from spatial statistics developed in Bayesian image analysis.
Hurn et al. (2003) provides a comprehensive review about this topic.

In the geothermal reservoir modelling problem we presented here, a non-informative
prior is used in the 1D homogeneous model with synthetic data. For the 3D model with
heterogeneous and spatially distributed parameters, a low-level pixel based representation
and Gaussian Markov random field prior (Rue and Held, 2005) are employed to parametrize
the permeabilities. A separate radial basis function (RBF) model is used to represent the
unknown boundary conditions.

The likelihood function L(d̃ | x) is constructed by given the probabilistic model of
various uncertainties associated with the data modelling process. The commonly used
stochastic relationship between the measurements and the model parameters is

d̃ = F (x) + e, (1)

where the vector e represents random noise in the data modelling process, and the forward
model F (x) is usually deterministic. The noise vector e probes both the measurement noise
and uncertainties that arise from model bias between F (x) and the underlying physical
system. Such model bias may be caused by numerical error in computer implementation
of the forward model, spatial discretization of the unknown parameters, and inappropriate
assumptions in the mathematical model, etc. Many classical literatures of inverse problems
consider the forward model is perfect in representing the underlying system, and only assume
the existence of the measurement noise. However, when the model bias is more significant
than the measurement noise (which is common in practice), ignorance of such model bias
would results an imprecise likelihood function, and the inversion results often have biased
estimates and over-tighten uncertainty intervals. It is worth mentioning that Kennedy and
O’Hagan (2001) offer a framework for analysing the model biases of complex computer
code outputs, which requires multiple sets of data are measured from experiments with
various controllable model inputs. Unfortunately, there is only one set of data comes from
a single experiment in most of the inverse problems, and hence it is unclear how to apply
the framework of Kennedy and O’Hagan (2001) in such case. As discussed by Higdon et al.
(2003), it may not possible to separate the measurement noise and model bias in case that
only single set of data is available. Thus, it is necessary to incorporate the modeller’s
judgments about the appropriate size and nature of the noise term e.

For the geothermal reservoir models, a Gaussian noise with known variance is used to
generate the synthetic data set in the 1D homogeneous test case. In the 3D problem with
measured data set, since the data are reasonably sparse and measured in steady state, we
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assume that the noise e follow a zero mean independent and identically distributed Gaussian
distribution. The value of the variance is suggested by manual calibration results and trial
runs of MCMC sampling, and the posterior analysis shows that this simplified assumption
is appropriate. Therefore, the likelihood function used in this research has the form

L(d̃|x) ∝ exp

{

−
1

2
[F (x)− d̃]TΣ−1

e [F (x)− d̃]

}

, (2)

where Σe is the covariance matrix of the noise vector e.
Following the Bayes’ rule, the unnormalized posterior distribution is given as the product

of likelihood function and prior distribution:

π(x|d̃) ∝ L(d̃|x)π(x). (3)

2.2. Computation
In principle, the posterior distribution can be explored by MCMC method, the Metropolis-
Hastings algorithm (MH) (Metropolis et al., 1953; Hastings, 1970) and its extensions (e.g.,
Green, 1995) in particular. Then, robust model predictions and uncertainty quantification
are calculated as expectations of desired quantities over the posterior distribution by Monte
Carlo integration. In recent years, this method has been applied to various field of inverse
problems as summarized in Section 1. However, there are several important features about
the posterior distribution that would make it difficult to be explored:

(a) The spatially distributed parameters x are usually high dimensional, from the order
of ten to ten thousands, depends on the parametrization and grid resolution.

(b) Evaluation of the posterior distribution is computationally expensive, because simu-
lating the forward model F (·) usually involves computationally demanding numerical
schemes such as finite element and finite difference methods.

(c) Since the governing equations of the forward map is usually a set of non-linear PDEs,
the resulting posterior may be highly non-linear and has strong spatial interactions.

For example, the 3D geothermal reservoir model presented in Section 4 has about ten
thousands parameters, each model evaluation takes about 30 to 50 minutes CPU time, and
the governing PDEs is highly non-linear (phase changing and table look-up are involved).

These features render that there are two crucial issues in applying MCMC method
to practical inverse problem, includes: (i) designing proposal distributions that is able
to efficiently traverse the support of the posterior, and (ii) lowering the computational
cost per iteration of MH to make the MCMC sampling being computationally feasible.
Formally, the former is a problem on improving the statistical efficiency, i.e., using less
number of MCMC iterations to generate statistically independent samples; and the latter
requires enhancement in the computational efficiency, i.e., using less CPU time to generate
statistically independent samples.

By using adaptivity or multiple chains to optimize the scale and orientation of the pro-
posal distribution, recent algorithms such as AM, DRAM, the adaptive Metropolis within
Gibbs algorithm (AMWG) of Roberts and Rosenthal (2009), and DEMC demonstrate sta-
tistical efficiencies in several high dimensional sampling problems (Haario et al., 2004; Turro
et al., 2007; Vrugt et al., 2008). Also, these algorithms avoid the expensive (in terms of
computing and human input) tuning process by employing adaptivity or multiple chains.
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However it is still infeasible to apply these algorithms directly to computationally demand-
ing models that requires hours to simulate. To improve the computational efficiency, the
ADAMH algorithm we present here uses the idea of delayed acceptance (Christen and Fox,
2005) to reduce the computational cost per iteration.

2.3. Delayed acceptance Metropolis-Hastings algorithm
Suppose we have a computationally expensive target distribution π(·), and a computation-
ally fast approximation π∗

x(·) (can be state dependent or state independent) of π(·). Consider
a proposal distribution q(x,y). DAMH first “corrects” the proposal with the approximation
π∗
x(y) to create a modified proposal distribution q∗(x,y), to be used in a standard MH. If

the modified proposal has a high acceptance rate, DAMH gains computational efficiency by
avoiding calculating π(y) when proposals are rejected by π∗

x(y). Following the description
of of Christen and Fox (2005), one iteration of the process is given by:

Algorithm 1. Delayed acceptance Metropolis-Hastings
At step n, given Xn = x, then Xn+1 is determined in the following way:

(a) Generate a proposal y from the proposal distribution q(x, ·).
(b) Let

α(x,y) = min

[

1,
π∗
x(y)q(y,x)

π∗
x(x)q(x,y)

]

.

With probability α(x,y), accept y to be used as a proposal for the standard Metropolis–
Hastings algorithm. Otherwise use y = x as a proposal. The actual proposal distribu-
tion used is

q∗(x,y) = α(x,y)q(x,y) + (1− r(x))δx(y)

where r(x) =
∫

X
α(x,y)q(x,y)dy and δx(·) denotes the Dirac mass at x.

(c) Let

β(x,y) = min

[

1,
π(y)q∗(y,x)

π(x)q∗(x,y)

]

.

With probability β(x,y) accept y setting Xn+1 = y. Otherwise reject y by setting
Xn+1 = x.

For state dependent approximation, we can assume that the approximate posterior has
the same density as the exact target distribution at the “current” state of the chain, i.e.,
π∗
x(x) = π(x). Hence, the second step acceptance probability can be simplified by

β(x,y) = min

[

1,
min{π(y)q(y,x), π∗

y(x)q(x,y)}

min{π(x)q(x,y), π∗
x(y)q(y,x)}

]

.

If the approximation is state-independent, π∗(·) is used instead of π∗
x(·), and the second

step acceptance probability has the following form

β(x,y) = min

[

1,
π(y)

π∗(y)

π∗(x)

π(x)

]

,

which is exactly the “surrogate transition method” (Liu, 2001). However, the surrogate
transition does not include a state-dependent approximation, which is an important aspect
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of DAMH since that case commonly occurs in efficient construction of ROM to nonlinear
problems.

As cited in Theorem 2 of Christen and Fox (2005), both of statistical and computational
efficiencies of DAMH depend on the quality of the approximate target distribution. A
“good” approximation will produce β(x,y) ≈ 1, and hence the transaction probability from
x to y of the delayed acceptance scheme is close to of the standard MH. One obvious way
to construct an approximation is to directly replace the forward model by a ROM in the
likelihood function. Since a state independent coarse model is used as the ROM in this
research, we have the following approximation:

Approximation 1. Approximation built by directly using ROM. A state independent
ROM is used, and the approximate posterior distribution has the form of

π∗(x|d̃) ∝ exp

{

−
1

2
[F ∗(x)− d̃]TΣ−1

e [F ∗(x)− d̃]

}

π(x). (4)

This approximation can be generalized to state dependent case when a state dependent
ROM F ∗

x (y) is used. To make consistency notations, the terms “coarse model” and “ROM”
will be refer to as state independent ROM hereinafter. The state dependent ROM will be
addressed specifically.

The model reduction error of the ROM is usually significant for complex forward models.
This has not been counted by the above approximation, and would induces a very low
acceptance rate in the second step of DAMH. Efendiev et al. (2005) and the numerical
experiments in Section 4 show that the second step acceptance rate is only about 20% for
approximation 1, which results in a very poorly mixing chain. It always possible to improve
the accuracy of the ROM by reduce the level of model reduction, e.g., using a coarse model
with grid resolution close to the forward model. However, this would result in an increasing
computational cost in evaluating the approximation. The EEM introduced in next section
provides an alternative way to improve the accuracy of the approximation by including the
statsitics of the model reduction error. This approach uses the same ROM, and does not
incur additional computational cost.

2.4. Enhanced error model
Kaipio and Somersalo (2007) suggest that, by employing an estimation of the model reduc-
tion error between the low precision ROM and the forward model, it is possible to make
an accurate approximate posterior distribution based on a ROM. Suppose that, we have a
ROM F ∗(·), then Equation (1) can be expressed as

d̃ = F ∗(x) + [F (x)− F ∗(x)] + e

= F ∗(x) +B(x) + e. (5)

Where B(x) is the change in the model reduction error between the forward model and the
ROM.

The enhanced error model of Kaipio and Somersalo (2007) assumes that the model
reduction error is independent of the model parameters and normally distributed, then
Equation (5) is reduced to

d̃ = F ∗(x) +B + e,
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where B ∼ N(µB ,ΣB). To construct the EEM, a set of L random samples is drawn from
the prior distribution xi ∼ π(x), i = 1, · · · , L, for each of xi. Then, µB and ΣB are
empirically estimated from the differences of the model outputs of the forward model and
the ROM, {F (xi)− F ∗(xi)}

L
i=1.

The EEM and a ROM can be used to give the following approximation to the exact
likelihood function (2), and hence the approximate unnormalized posterior distribution (3),
which have the form of:

Approximation 2. EEM built over the prior distribution. A ROM and the EEM are
used to construct the following approximate posterior distribution

π∗(x|d̃) ∝ exp

{

−
1

2
[F ∗(x) + µB − d̃]T (ΣB +Σe)

−1[F ∗(x) + µB − d̃]

}

π(x). (6)

This approximation has been employed by Arridge et al. (2006) to analyse an optical
diffusion problem, and the MAP estimate shows a reliable reconstruction result. More
interestingly, the marginal density of the EEM is very close to the exact marginal posterior
density, while the marginal density of Approximation 1 has almost zero probability in the
mode of the exact marginal posterior density. This suggest that, the approximate posterior
distribution (6) provides a potential approximation for DAMH.

Note that the EEM is constructed a priori to the parameter reconstruction. Because
the prior distribution may have a quite different structure compared to the posterior dis-
tribution. When the EEM is used to estimate the parameters from a particular measured
data set, it may not be able to accurately capture the differences between the outputs of the
forward model outputs and ROM that are compatible with data. To make a more accurate
estimation of the EEM and hence a better approximate posterior distribution, we integrate
the EEM into ADAMH as an approximation used in the first step of the algorithm. This
allows for estimating the a posteriori model reduction error adaptively through MCMC
sampling.

3. Adaptive delayed acceptance Metropolis-Hastings algorithm

In practice, using a MCMC algorithm usually requires adjusting the variables in the tran-
sition kernel to achieve statistical efficiency, e.g. the scale variables in the random walk
proposals of MH. If there exists many variables to adjust or the target distribution is com-
putationally expensive to evaluate, this tuning process can be very time consuming in terms
of human input and computing time. By summarizing the statistical information of the sam-
ples previously drawn from a Markov chain, the adaptive MCMC algorithms (Haario et al.,
2001; Atchade and Rosenthal, 2005; Andrieu and Moulines, 2006; Roberts and Rosenthal,
2007, 2009) provide possibilities for automatically adjusting those variable.

To allow for the construction of adaptive MCMC algorithms under more general and
simpler conditions, Roberts and Rosenthal (2007) proved ergodicity theorems of adaptive
MCMC algorithms under simpler conditions, namely simultaneously ergodicity and dimin-
ishing adaptation. Based on these regularity conditions, we design ADAMH that does not
only adaptively adjust the form of the first step proposal distribution, but also uses the
empirical estimation of the model reduction error from the sampling history to improve the
accuracy of the approximate posterior distribution. Before discussing ADAMH, we first
review two adaptive MCMC algorithms: the adaptive Metropolis algorithm (AM) (Haario
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et al., 2001) and the adaptive Metropolis-within-Gibbs algorithm (AMWG) (Roberts and
Rosenthal, 2009).

3.1. Examples of adaptive MCMC algorithms
Let x and X denote the current state and parameter space, respectively. Assume that the
parameter space X ∈ Rd is a subspace of Rd with compact support. AM is a Metropolis
algorithm with Gaussian proposal q(x, ·) = N(x,Σ), where Σ is estimated adaptively from
the past history of the chain. Suppose we have a target distribution π(·), AM is given by:

Algorithm 2. Adaptive Metropolis
At step n, given Xn = x, then Xn+1 is determined in the following way:

(a) Propose new state y from the proposal

qn(x, ·) =

{

N(x, 0.12

d Id) n ≤ 2d

(1− β)N(x, 2.382

d Σn) + βN(x, 0.12

d Id) n > 2d
,

where Σn is the empirical estimation of the covariance structure of the target distri-
bution up to step n, and β is a small positive constant.

(b) With probability min
[

1, π(y)
π(x)

]

, set Xn+1 = y, otherwise Xn+1 = x.

The motivation of AM is that the proposal distribution N(x, 2.382

d Σn) is optimal in a
particular large dimensional context (Roberts et al., 1997; Roberts and Rosenthal, 2001).

The mixer with the non-adaptive Gaussian distribution, N(x, 0.12

d Id) is introduced to pre-
vent the algorithm from being stuck at problematic value of Σn.

Unlike AM tune the random walk proposal by calculating empirical estimates of past
samples, AMWG uses a different idea of adaptation by adjusting the proposal variable to
match the target acceptance rate. This algorithm uses a Gaussian distribution N(xi, γ

2
i )

component-wise as the proposal, which is defined as:

Algorithm 3. Adaptive Metropolis-within-Gibbs
At step n, given Xn = x, then Xn+1 is determined in the following way:

(a) Initialize y = x, for all i = 1 . . . , d:

• we draw z from the proposal distribution qγi
(xi, ·) = N(xi, γ

2
i ),

• with probability min
[

1, π(y1,...,z,...,yd)
π(y)

]

, set yi = z, otherwise yi unchanged.

(b) Then Xn+1 = y after updating all the components of the parameter y.
(c) For a pre-specified batch number N , if n mod N = 0, for all i = 1 . . . , d, the acceptance

rate α̂i from the past N updates on ith component is calculated. Then, if α̂i > 0.44,
γi = γi + exp(δ), otherwise γi = γi − exp(δ). Here δ = min[0.01, ( n

N )−1/2].

AMWG attempts to vary the scale of the proposal to match the acceptance rate of 0.44
for all the elements of the parameter, where the acceptance rates of 0.44 is optimal for one-
dimensional proposals in certain settings, see Roberts et al. (1997); Roberts and Rosenthal
(2001).
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3.2. Adaptive delayed acceptance Metropolis-Hastings algorithm
To allow estimation of the model reduction error from the posterior distribution adaptively
through running ADAMH, we have the following adaptive approximation:

Approximation 3. EEM built over the posterior distribution. A ROM is used, and the
approximate posterior distribution at step n has the form of

π∗
ξ(x|d̃) ∝ exp

{

−
1

2
[F ∗(x) + µB,n − d̃]T (ΣB,n +Σe)

−1[F ∗(x) + µB,n − d̃]

}

π(x). (7)

Where ξ = (µB,n,ΣB,n) represents the mean and covariance matrix of model reduction
error after n steps of adaptive updating. For an accepted state xn at time n, the difference
between the forward model and the ROM, Bn = F (xn)−F ∗(xn), can be computed virtually
no cost compared to the evaluation time of the forward models. Therefore, (µB,n,ΣB,n) is
updated to (µB,n+1,ΣB,n+1) by:

µB,n+1 =
1

n+ 1
[nµB,n +Bn+1],

ΣB,n+1 =
1

n
[(n− 1)ΣB,n +Bn+1Bn+1

T − nµB,n+1µB,n+1
T ]. (8)

By Combining the adaptive approximation (e.g., Approximation 3), adaptive MCMC
algorithms and DAMH together, we have ADAMH. To simplify the notation, let π(·) =
π(·|d̃) be the exact posterior distribution based on the forward model. To give a more
general type of approximation than the state-independent Approximation 3, we let π∗

ξ,x(·) =

π∗
ξ,x(·|d̃) denotes the state dependent approximation to the exact posterior distribution,

where ξ is the variable used in the approximate posterior distribution, e.g., Equation (7) in
Approximation 3. Let qγ(x, ·) represents the adaptive proposal distribution used in the first
step, where γ is the variables in the proposals, e.g., the covariance matrix of AM. Thus,
ADAMH is given as:

Algorithm 4. Adaptive delayed acceptance Metropolis-Hastings
At step n, suppose we have Xn = x, then Xn+1 is determined in the following way:

(a) Generate a proposal y from the adaptive proposal distribution qγ(x, ·).
(b) Let

αγ,ξ(x,y) = min

[

1,
π∗
ξ,x(y)qγ(y,x)

π∗
ξ,x(x)qγ(x,y)

]

.

With probability α(x,y), accept y to be used as a proposal for the standard MH.
Otherwise use y = x as a proposal. The actual proposal distribution used is

q∗γ,ξ(x,y) = αγ,ξ(x,y)qγ(x,y) + (1− rγ,ξ(x))δx(y),

where rγ,ξ(x) =
∫

X
αγ,ξ(x,y)qγ(x,y)dy and δx(·) denotes the Dirac mass at x.

(c) Let

βγ,ξ(x,y) = min

[

1,
π(y)q∗γ,ξ(y,x)

π(x)q∗γ,ξ(x,y)

]

.

With probability βγ,ξ(x,y) accept y setting Xn+1 = y. Otherwise reject y setting
Xn+1 = x.
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(d) Update the approximation π∗
ξ,x(·).

(e) Update the adaptive proposal qγ(x, ·).

In this algorithm, the proposal qγ(x, ·) in step (a) and its adaptation in step (e) may have
the form of any of the adaptive algorithms such as AM and AMWG. When Approximation
3 is used in step (b), for each state Xn = x in the Markov chain, a variable Bn is required
to represent the difference between the forward model and the ROM, if a candidate state
y is accepted in step (c), Bn+1 is updated to F (y)− F ∗(y), otherwise Bn+1 = Bn. Then,
the EEM is updated in step (d) as in the updating rule (8).

3.3. Ergodicity conditions and theorem
We follow the notation in Roberts and Rosenthal (2007) to formalise ADAMH. Suppose
π(·) is a fixed target distribution, defined on state space X with σ-algebra B(X ), e.g., the
exact posterior distribution. Let {Kγ}γ∈Y be a family of Markov chain kernels (associated
with standard MH) on X , and each has π(·) as the unique stationary distribution for all
γ ∈ Y. Let {π∗

ξ,x(·)}ξ∈E be a family of state-dependent approximations to the exact target
distribution π(·) for all ξ ∈ E , e.g., Approximation 3. The variable γ and ξ are referred
as adaptation indices, e.g. the ξ = (µB,n,ΣB,n) in Approximation 3 and the proposal
variables γi, i = 1, . . . , d in AMWG.

At each time n, ADAMH updates γ and ξ by Y-valued random variable Γn and E-
valued random variable Ξn, respectively. The transition kernel of ADAMH is denoted by
{Kγ,ξ}γ∈Y,ξ∈E . By using the conditions stated in Theorem 1 and Corollary 5 in Roberts
and Rosenthal (2007). We prove the following theorem that, the ergodicity of ADAMH can
be achieved by imposing certain regularity conditions.

Theorem 1. Consider an adaptive delayed acceptance Metropolis-Hastings algorithm,
with target distribution π(·) defined on a state space X , with first step proposal adaptation
index Y and approximation adaptation index E.

Suppose for each γ ∈ Y, Kγ represents a standard Metropolis-Hastings algorithm with
proposal kernel Qγ(x,dy) = qγ(x,dy)λ(dy) having a density qγ(, ·) with respect to some fi-
nite reference measure λ(·), with corresponding density h for π(·) so that π(dy) = h(y)λ(dy).
Similarly, for each ξ ∈ E, the state-dependent approximation π∗

ξ,x(·) has density h∗
ξ,x(·) such

that, π∗
ξ,x(dy) = h∗

ξ,x(y)λ(dy). Let Kγ,ξ denotes the transition kernel of an adaptive de-
layed acceptance Metropolis-Hastings algorithm with a given first step transition kernel Kγ

and a given approximation π∗
ξ,x(·). Suppose further the following conditions hold:

(a) The state space X is compact with respect to some topology.
(b) Each transition kernel Kγ is ergodic for π(·).
(c) For all γ ∈ Y, qγ(x, ·) is uniformly bounded. For each fixed y ∈ X , the mapping

(x,γ) → qγ(x,y) is continuous with respect to some product metric space topology,
with respect to which X × Y is compact.

(d) For given γ ∈ Y and ξ ∈ E, Kγ(x,y) > 0 implies π∗
ξ,x(y) > 0.

(e) For each fixed y ∈ X , the map (x, ξ) → h∗
ξ,x(y) is continuous with respect to some

product metric space topology, with respect to which X × E is compact.
(f) Diminishing adaptation. The amount of adaptation in the transition kernel van-

ishes as n → ∞, i.e. limn→∞ ‖KΓn+1,Ξn+1
(x, ·)−KΓn,Ξn(x, ·)‖TV = 0 in probability,

where ‖µ(·)− ν(·)‖TV = supA∈B(X ) ‖µ(A)− ν(A)‖ is the total variational norm.
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Then ADAMH is ergodic.

Proof: In order to prove this theorem, the elements of Theorem 1 of Roberts and Rosenthal
(2007) are used along with the method of proof used in Corollary 5 (ergodicity of the
single step Metropolis-Hastings algorithm with adaptive proposal) of Roberts and Rosenthal
(2007).

By Theorem 1 of Christen and Fox (2005), Condition (b) and (d) imply that the tran-
sition kernel Kγ,ξ is ergodic for given γ ∈ Y and ξ ∈ E . The effective proposal density in
the second step of ADAMH can be written as

q∗γ,ξ(x,dy) = αγ,ξ(x,y)qγ(x,y)λ(dy) + [1− rγ,ξ(x)]δx(dy),

where αγ,ξ(x,y) is the first step acceptance probability, in the form

αγ,ξ(x,y) = min

[

1,
h∗
ξ,x(y)qγ(y,x)

h∗
ξ,x(x)qγ(x,y)

]

,

and rγ,ξ(x) is the probability of accepting a proposal from x, which is given by:

rγ,ξ(x) =

∫

X

αγ,ξ(x,y)qγ(x,y)λ(dy).

Since αγ,ξ(x,y) is jointly continuous in x, γ, and ξ by Condition (c) and (d), rγ,ξ(x) is a
jointly continuous function of (x,γ, ξ) ∈ X × Y × E by the Bounded Convergence Theorem.
We can assume without loss of generality that rγ,ξ(x) = 1 whenever λ(x) > 0, i.e., that
δx(·) and π(·) are orthogonal measures. Furthermore, the probability of being able to accept
a proposal in the first step fγ,ξ(x,y) = αγ,ξ(x,y)qγ(x,y) is uniformly bounded and jointly
continuous in x, γ and ξ.

Therefore, the overall probability of accepting a proposal from x in the an adaptive
delayed acceptance Metropolis-Hastings algorithm is given by:

ργ,ξ(x) =

∫

X

βγ,ξ(x,y)fγ,ξ(x,y)λ(dy),

where βγ,ξ(x,y) is the second step acceptance rate, in the form of

βγ,ξ(x,y) = min

[

1,
h(y)fγ,ξ(y,x)

h(x)fγ,ξ(x,y)

]

.

Using a similar argument to that above, ργ,ξ(x) is a jointly continuous function of (x,γ, ξ) ∈
X × Y × E , and the transition kernel of the ADAMH can be decomposed as

Kγ,ξ(x,dz) = gγ,ξ(x, z)λ(dz) + [1− ργ,ξ(x)]δx(dz),

where gγ,ξ(x, z) = qγ(x, z)αγ,ξ(x, z)βγ,ξ(x, z) is jointly continuous in x, γ and ξ.
Now we can exactly follow the proof of Corollary 5 of Roberts and Rosenthal (2007).

By iterating Kγ,ξ(x,dz), we have the n-step transition law

Kn
γ,ξ(x,dz) = gnγ,ξ(x, z)λ(dz) + [1− ργ,ξ(x)]

nδx(dz).
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Again, we can assume without loss of generality that ργ,ξ(x) = 1 whenever λ(x) > 0. It
then follows that:

‖Kn
γ,ξ(x, ·)− π(·)‖TV =

1

2

∫

X

|gnγ,ξ(x, z)− h(z)|λ(dz) + [1− ργ,ξ(x)]
n.

This quantity is jointly continuous in x, γ and ξ by the Bounded Convergence Theorem.
Moreover, it converges to zero as n → ∞ for each fixed x, γ and ξ. Hence, by compact-
ness, the convergence is uniform in x, γ and ξ. Thus, the simultaneous uniform ergodicity
condition in Theorem 1 of Roberts and Rosenthal (2007) is satisfied. Then, also the transi-
tion kernel Kn

γ,ξ(x, ·) satisfies the diminishing adaptation. Therefore, all the conditions in
Theorem 1 of Roberts and Rosenthal (2007) are satisfied, and the result follows. �

The strong conditions imposed in Theorem 1 can be relaxed further by using more
specialized arguments for specific algorithms, e.g., Saksman and Vihola (2010); Vihola
(2011). However, these conditions are sufficient to design usable adaptive approximations in
ADAMH for practical purpose. Given an adaptive proposal density qγ(x, ·) satisfies Condi-
tion (b) and (c) of Theorem 1, the following corollary prove that Approximation 3 satisfies
Condition (d) and (e) of Theorem 1, and hence ADAMH using Approximation 3 is ergodic.

Corollary 1. Suppose that the class of proposal kernels used in the first step of ADAMH,
{Qγ}γ∈Y , satisfy the diminishing adaptation condition and Condition (b) and (c) of Theo-
rem 1, ADAMH with Approximation 3 is ergodic.

Proof: Without loss of generality, we assume that the parameter space X is compact, as we
can always define some bounds for the input parameter to the computer model. Since any
continuous image of a compact set is compact, for any continuous mathematical model, the
image is compact. When the continuous map is solved numerically by finite element methods
or integrated finite difference methods, the computer model is necessarily continuous since
the stiffness matrix is non-singular. This implies that the outputs of the forward model F (·)
and its ROM F ∗(·) are compact, and hence the model reduction error B(·) = F (·)−F ∗(·) is
compact as well. Thus, the mean and covariance of the model reduction error is bounded,
i.e., ‖µB,n‖∞ < C1 and 0 ≤ ΣB,n < C2I for some C1, C2 > 0. This guarantees that the E
is compact, and hence X × E is compact.

The approximate posterior distribution (7) is always continuous except when ΣB,n+Σe

is singular. We can show that ΣB,n+Σe is bounded away from zero as follows. The positive
definite observation noise covariance Σe ensures that, there exists C4 > C3 > 0 such that
C3I ≤ ΣB,n + Σe < C4I, and hence the approximate posterior distribution defined by
the approximate posterior distribution (7) and an appropriate prior distribution has the
continuous and bounded density mapping (x, ξ) → h∗

ξ,x(y). Therefore, Condition (d) and
(e) in Theorem 1 is satisfied.

π∗
ξ,x(·) give in the updating rule (8) is easy to satisfy the diminishing adaptation con-

dition. Because the empirical estimates change about O(1/n) at the nth iteration, the
mean and covariance matrix trend to constant expected values over π(·). Together with
the diminishing adaptation assumed for {Qγ}γ∈Y , the diminishing adaptation condition is
satisfied, and thus Theorem 1 applies. �

3.4. State dependent approximations
One significant advantage of Approximation 3 is that it has more accurate mean estimation
and smaller variance than Approximation 2. Another advantage is that this adaptive ap-
proach does not require any pre-computation to give an estimation of EEM before setting
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up an MCMC simulation. Since the model reduction error commonly has different struc-
tures in different regions of the state space, a local estimation of B(x) can be used instead
of the global mean. Suppose that, the model reduction error B(x) is known for some point
x ∈ X . We assume for the points around x, say y ∈ {‖y − x‖ ≤ δ : y ∈ X} for given δ > 0,
the model reduction error B(y) is close to B(x), i.e., ‖B(y)−B(x)‖ ≤ CδP for some C > 0
and P > 1. Let us define a state-dependent ROM based on the zeroth order correction to
the ROM, F ∗

x (y) = F ∗(y) + [F (x) − F ∗(x)], a non-adaptive version of approximation is
given:

Approximation 4. Local approximation. Suppose at step n, the Markov chain has state
Xn = x, a state-dependent ROM F ∗

x (·) can be given as the sum of model reduction error at
Xn = x and the ROM F ∗(·) to the forward model F (·). For a proposed state y ∼ q(x, ·), it
is given by:

F ∗
x (y) = F ∗(y) + [F (x)− F ∗(x)]. (9)

The approximate posterior distribution has the form of

π∗
x(y|d̃) ∝ exp

{

−
1

2
[F ∗

x (y)− d̃]TΣ−1
e [F ∗

x (y)− d̃]

}

π(y). (10)

It is worth mentioning that the above state-dependent ROM is just an example based
solely on a state independent ROM and a zeroth order local correction. Whenever it is possi-
ble, higher oder derivatives can be used to give a more accurate state-dependent ROM. The
error structure of the above state-dependent ROM can also be estimated by employing the
EEM, Approximation 3 and 4 can be combined to give a more sophisticated approximation:

Approximation 5. EEM built over the posterior distribution with state-dependent ROM.
Suppose at step n of the Markov chain, we have Xn = x and a proposed state y ∼ q(x, ·).
Let ξ = (µB,n,ΣB,n) represents the mean and covariance matrix of EEM of the state-
dependent ROM after n steps of adaptively updating. The state-dependent approximate
posterior distribution has the form of

π∗
ξ,x(y|d̃) ∝ exp

{

−
1

2
[F ∗

x (y) + µB,n − d̃]T (ΣB,n +Σe)
−1[F ∗

x (y) + µB,n − d̃]

}

π(y). (11)

When the above zeroth order correction (9) is used, the model reduction error is given by
Bx(y) = F (y)− F ∗

x (y) for an accepted state y, otherwise Bx(y) = 0.
Given a current state x, the mean and covariance are only estimated from the accepted

state y. Hence, the mean and covariance of the EEM in Approximation 5 with ROM (9)
are actually estimations of Eπ[

∫

X
Bx(y)K(x,y)dy] and Covπ[

∫

X
Bx(y)K(x,y)dy], respec-

tively. Where the transition kernel K(x,y) gives the transaction probability from x to
a candidate y. In general, when the distance between two states x and y increases, the
model reduction error Bx(y) increases, while the transaction probability K(x,y) decreases.
Eπ[

∫

X
Bx(y)K(x,y)dy] can be written as:

∫

X

∫

X

[F (y)− F ∗(y)]π(x)K(x,y)dydx−

∫

X

∫

X

[F (x)− F ∗(x)]π(x)K(x,y)dydx.

From the detailed balance condition, π(x)K(x,y) = π(y)K(y,x), we have:
∫

X

∫

X

[F (y)− F ∗(y)]π(y)K(y,x)dydx−

∫

X

∫

X

[F (x)− F ∗(x)]π(x)K(x,y)dxdy,
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which has value zero. However, the covariance of the model reduction error Bx(y) is non-
zero, and can be computed adaptively by:

ΣB,n =
1

n− 1

[

(n− 2)ΣB,n−1 +Bxn−1
(xn)Bxn−1

(xn)
T
]

(12)

Hence, the approximate posterior distribution (11) can be rewritten in the following form:

π∗
ξ,x(y|d̃) ∝ exp

{

−
1

2
[F ∗

x (y)− d̃]T (ΣB,n +Σe)
−1[F ∗

x (y)− d̃]

}

π(x). (13)

The Approximation 4 can be considered as a special case of Approximation 5 with zero
covariance. Given an adaptive proposal distribution qγ(x, ·) that satisfies the Condition 2,
then following the proof of Corollary 1, the ergodicity of ADAMH with Approximation 5
can be shown.

Corollary 2. Suppose that the class of proposal kernels used in the first step of ADAMH,
{Qγ}γ∈Y , satisfy the diminishing adaptation condition and Conditions (b) and (c) of The-
orem 1, ADAMH with Approximation 5 is ergodic.

Proof: See proof of Corollary 1. �

Compare Approximation 5 to Approximation 3, the use of a state dependent approxima-
tion is able to give a more accurate approximation is the jump size in the first step proposal
is small. However, this may not hold for large jump size. Another practical advantage give
by Approximation 5 with ROM (9) is that it does not require as many burn-in steps as
Approximation 3 to achieve good second step acceptance rate. In practice, we found that
Approximation 5 with ROM (9) could archive good second step acceptance rate without
any burn-in steps, while Approximation 3 need few thousands or even more burn-in steps
to build a reasonably good approximation. This mainly because of the local structure used
in Approximation 5 does not require any computation from the sample history, which is
compulsory for the EEM used in Approximation 3. However, Approximation 5 does require
burn-in steps to build the covariance matrix, which also improves the second step accep-
tance rate. This is observed in several computing experiments in Cui (2010), and further
study is necessary to understand how the covariance matrix affect the statistical efficiency
of Approximation 5.

3.5. Performance estimates
To estimate the speed-up factor of ADAMH, let the computing time of the approximate
target density and the exact target density be t∗ and t, respectively. Suppose that the
average first step acceptance rate of ADAMH is about α̂. Let the integrated autocorrelation
time (IACT) of some statistics h be τ∗. Consider the same target distribution also being
sampled by the standard MH, with the IACT of h denoted by τ . The number of effectively
independent samples generated in n iteration by the standard MH and ADAMH are n/(2τ)
and n/(2τ∗) respectively. The time required to run n iteration for the standard MH and
ADAMH are nt and n(1 − α̂)t∗ + nα̂(t∗ + t) (or n(1 − α̂)t∗ + nα̂(2t∗ + t) if calculating
the second step acceptance rate requires backward evaluation of the approximation π∗

y(x),
e.g. with the linearisation in Christen and Fox (2005)). Hence the speed-up factor of
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ADAMH compared to the standard MH can be estimated as the ratio of computing time
per effectively independent sample, which has the form of

τ

τ∗
1

α̂+ t∗

t

, (14)

or
τ

τ∗
1

α̂+ (1 + α̂) t
∗

t

, (15)

for the case which requires backward evaluation of the approximation. Here τ/τ∗ < 1
is a measure of the decrease of the statistical efficiency of ADAMH. ADAMH is always
statistically less efficient than the standard MH (Christen and Fox, 2005), because it requires
more iterations to generate a statistically independent sample than the standard MH. This
fact follows directly from the condition βn(x,x

′) ≤ 1. This suggest that there are two
important issues in implementing ADAMH: (i) designing efficient moves in the first step,
which optimize the statistical efficiency in the sense of running a standard MH; and (ii)
maintaining the statistical efficiency of ADAMH, which requires a “good” approximate
posterior distribution that has transaction probability from x to y close to the standard
MH, i.e., βn(x,y) ≈ 1, and hence τ/τ∗ ≈ 1.

The speed-up factor (14) and (15) suggest that we can always lower the first step accep-
tance rate in ADAMH, and hence the overall acceptance rate, thus lowering the computing
time per independent sample. However, the statistical efficiency of the algorithm drops as
the acceptance rate approaches 0 (Roberts et al., 1997; Roberts and Rosenthal, 2001). There
is a trade off in selecting the appropriate acceptance rate. Roberts et al. (1997); Roberts
and Rosenthal (2001) suggested an optimal acceptance rate of about 0.23 for high dimen-
sional parameters, but they also suggest that any acceptance rate in the rage of [0.1, 0.6]
gives good statistical efficiency. The numerical experiments based on geothermal reservoir
models in (Cui, 2010) shows that an acceptance rate of 0.1 produces optimal statistical
efficiency, and hence we adopt it for the higher dimensional problem in Section 4.

4. Applications in geothermal reservoir models

We apply ADAMH to two sampling problems of geothermal reservoir models here. First,
an one dimensional radial symmetry model of the feedzone of a geothermal reservoir with
synthetic data is used to validate the algorithm. Then ADAMH is applied to sample a 3D
model with measured data. We start this section by reviewing the governing equations and
its numerical simulator of the geothermal reservoir.

4.1. Data simulation
Multiphase non-isothermal flow in a geothermal reservoir can be simulated by the numerical
package TOUGH2 (Pruess, 1991). In TOUGH2, two phase flow (water and vapour) is mod-
elled by general mass balance and energy balance equations. For an arbitrary subdomain
Ω with bounding surface ∂Ω, the balance equations can be written in the form

d

dt

∫

Ω

Mα dV =

∫

∂Ω

Qα · n̂ dΓ +

∫

Ω

qα dV, (16)

where Ω is the control volume and ∂Ω is the boundary of the control volume. The accumu-
lation term qα represents the mass (qm) and heat qe sources or sinks in the control volume,
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and Qα denotes the mass (Qm) or energy (Qe) flux through the boundary of the control
volume. The mass and energy within the control volume are represented by Mm and Me,
respectively. Here, Mm and Me are defined by

Mm = φ (ρlSl + ρvSv),

Me = (1− φ) ρrcrT + φ (ρlulSl + ρvulSv).

Here φ is porosity, ρ is density, S is saturation, u is specific internal energy, c is specific
heat and T is the temperature. The subscripts l, v and r indicate the quantities pertaining
to liquid, vapour and rock, respectively. Note that: Sl + Sv = 1.

The mass flux term Qm is given as a sum over liquid and vapour phase:

Qm =
∑

β=l,v

kkrβ
νβ

(▽p− ρβg). (17)

Here k is a diagonal second order permeability tensor in 3-dimensions, g represents the
acceleration due to gravity, ▽p is the pressure gradient acting on the fluid flow, and νβ
is the kinematic viscosities. Relative permeability krβ is introduced to account for the
interference between liquid and vapour phases as they move through the rock matrix in
the geothermal reservoir. There are several empirically derived curves available to model
krβ as functions of vapour saturation Sv. We use the van Genuchten-Mualem model (van
Genuchten, 1980):

(krl, krv) = fvGM(m,Srl, Sls)

where m, Srl, and Sls are hyper-parameters. This model has restrictions 0 ≤ krl, krv ≤ 1,
Srl + Srv < 1, and Srl < Sls.

Energy is carried by the movement of steam and water, and by thermal conduction.
Hence the energy flux Qe is given by

Qe =
∑

β=l,v

kkrβ
νβ

(▽p− ρβg)hβ −K▽T. (18)

Here h denotes specific enthalpy and K is the thermal conductivity in a saturated medium.

In the system of equations (16) - (18), pressure p and temperature T (or vapor saturation
Sv for two phase flow) are spatially distributed quantities that represent the state of the
system. Permeability k, relative permeabilities krl and krv and porosity φ are the parameters
of interest. The thermolphysical properties of liquid water and steam (such as density,
viscosity, specific internal energy, specific heat and specific enthalpy) are calculated using
steam table equations given by the International Formulation Committee (1967).

Spatial discretization of (16) is based on an integrated finite difference or finite volume
method, which is implemented in the existing Fortran code TOUGH2. To guarantee the
numerical stability of simulation, TOUGH2 uses a fully implicit method for numerical in-
tegration in time, and upstream weighting for calculating the velocity of fluid movement
between adjacent blocks (in (17) and (18)). For each time step, the Newton-Raphson
method is used to solve the resulting system of non-linear difference equations. TOUGH2
uses a preconditioned iterative sparse matrix solver for solving the linear equations at each
Newton-Raphson iteration (see Pruess, 1991).
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Fig. 1. Finite volume grids used for well discharge test analysis and data sets used for well dis-
charge test. (a): the forward model (640 blocks), (b): the ROM (80 blocks), (c): the production rate
(kg/seconds), (d): the pressure (bar), and (e): the flowing enthalpy (kJ/kg).

4.2. Well discharge test analysis
4.2.1. Model and parameter

In geothermal reservoir modelling, well discharge analysis are usually used to interpret the
local properties of the reservoir from pressure and enthalpy data measured during a short
period of field production. Based on assumption that all flows into the well come through a
single layer feedzone, An one dimensional radial symmetry forward model with 640 blcoks
is built to infer the near-well properties of the reservoir, as shown in the plot (a) of Figure 1.
A high resolution grid is used immediately outside the wellbore and the thickness increases
exponentially outside this region, where the wellbores is located in the centre of the models.
The ROM is build by coarsening the grid of the forward model to a coarse grid with 80
blocks, as shown in the plot (b) of Figure 1. The CPU time of evaluating the forward
model and the ROM are 2.60 and 0.29 seconds on a DELL T3400 workstation, where the
computing time of the ROM is about 11% of the forward model. Since the computing
time of these models are sensitive to the input parameters, they are measured from 1,000
simulations with different set of parameters.

The parameters of interest are the porosity, permeability, initial conditions and the
hyperparameters in the van Genuchten-Mualem relative permeability model, as well as
the initial vapour saturation (Sv0) and initial pressure (p0) that are used to represent the
initial thermodynamics state of the two-phase system. These make up the seven unknown
parameters for the data simulation:

x = (φ, log10(k), p0, Sv0,m, Srl, Sls) .

Note that the permeability k is represented on a base 10 logarithmic scale.
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Table 1. Performance summary of various approximations.
Approximation No EEM EEM a priori EEM a posteriori local EEM a posteriori

Acc. Rate (2nd) 0.17 0.47 0.80 0.97
IACT - - 147.09 145.87
Avr. Jump Dist. - - 0.0123 0.0155

To test ADAMH, a set of synthetic data is generated over 80 days with production rates
varying smoothly from about 4 kg/seconds to about 6 kg/seconds. The forward model
and the model parameters x = (0.12, 1.5 · 10−15, 120, 0.1, 0.65, 0.25, 0.91) are employed to
generate the synthetic data. The production rate and the noise corrupted pressure and
flowing enthalpy response are shown in plots (c)-(e) in Figure 1, where the noise follow an
i.i.d. Gaussian distribution with standard deviations σp = 3 bar for pressure and σh =
30 kJ/kg for the flowing enthalpy. This gives

Σe =

(

σ2
hIn 0
0 σ2

pIn

)

in the likelihood function (2), and observed data d̃ = (d̃h, d̃p)
T comprises the observed

flowing enthalpy and pressure, and n is number of measurements.

4.2.2. MCMC sampling

Fixed single-site update proposals are used to test ADAMH with Approximation 1, 2, 3
and 5. The proposals give an first step acceptance rate of 13.4% in ADAMH. We use IACT
of the log-likelihood function and average jump distance to benchmark the performance of
various approximations, these are summarized in Table 4.2.2. Since the Approximation 1
and 2 cannot produces sufficient mixing after 2×105 iterations, these chains are terminated,
and only the acceptance rates in the second step are recorded. For Approximation 3 and 5,
the chains are run for 2 × 106 iterations, and first 5 × 105 are discarded as burn-in steps.
The output traces of log-likelihood functions and estimations of IACTs for Approximation
3 and 5 are shown in Figure 2.

Firstly, we run ADAMH without using EEM (approximate posterior (1)), the resulting
Markov chain has a second step acceptance rate of about 17%, and demonstrates very poor
mixing, i.e., IACT of the log-likelihood function cannot be estimated through generated
samples after a large number of steps. After introducing the EEM in the prior (Approxi-
mation 2), the second step acceptance rate increases to 47%. However, this Markov chain
still does not achieve desirable mixing. ADAMH with Approximation 3 significantly in-
creases the mixing, with an estimated second step acceptance of 80%, and IACT of the
log-likelihood function is 147.09. Approximation 5 with ROM (9) enhances the perfor-
mance further, it achieves a second step acceptance rate of 97%, and a similar IACT of the
log-likelihood function is 145.87. The method and MATLAB code presented in Wolff (2004)
are employed to estimate the IACT. Since IACT cannot be accurately estimated from noise
data, we also use the average jump distance to compare the performance of Approximation
3 and 5. Approximation 5 produces an average jump distance about 0.0155, which is 26%
larger than 0.0123 of Approximation 3.

To estimate the speed-up factor of ADAMH, because the decrease of the statistical
efficiency τ/τ∗ in (14) cannot be computed as sampling by standard MH is computationally
prohibitive, we can only evaluate it upper bound. In this test example, the upper bound of
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the speed-up factor is about 4.1. Given the second step acceptance rates of Approximation 3
and 5 are more than 80%, the decrease of the statistical efficiency should not be significant.
Especially for Approximation 5, the 97% accpetance rate in the second step suggest that
the statistical efficiency of ADAMH should close to standard MH in this case.

The histograms of the model predictions computed on several different time points are
given in Figure 3. We can observe that the predictions at these observation times follow
uni-modal distributions that close to Gaussian. The model predictions and the 95% credible
intervals over an 80-day period are shown in Figure 3, with pressure on the left and enthalpy
on the right. For both predictions, the means follow the observed data reasonably well.

The histograms of the marginal distributions of the parameter x (see first two rows of
Figure 5) show skewness in porosity and two of the hyperparameters of the van Genuchten-
Mualem relative permeability model (m and Srl). The number of bins in the histograms are
chosen according to the Freedman-Diaconis rule (Freedman and Diaconis, 1981). The scatter
plots between parameters show strong negative correlations between the permeability (on
base 10 logarithmic scale) and the initial pressure, see the first plot of last row of Figure
5. There also exists strong negative correlations between the initial saturation and one of
the hyperparameters of the van Genuchten-Mualem (Sls), see the second plot of last row of
Figure 5.

4.3. Natural state modelling
One important step in setting up a large scale geothermal reservoir model is the natural
state modelling, in which the aim is the estimation of the large scale permeability structure
and boundary conditions (Grant et al., 1982; O’Sullivan, 1985). Because the horizontal
permeabilities are only able to be estimated locally by expensive well test analysis (in
terms of investment on drilling new production/injection wells), and there is no way to
infer the vertical permeability directly. The large scale permeability structure are inferred
from steady state temperature distributions indicating the movement of hot fluid, which
is directly influenced by the permeability structure and boundary condition. Since the
porosities do not affect the solution of the set of equations (16) - (18), and the relative
permeabilities only have minor impact on the solution, these parameters are not considered
in the natural state modelling.

The temperature measurements are presented in Figure 9, manual calibration results
and trial runs of MCMC sampling suggest that the model mis-fit has standard deviation
σT = 7.5 ◦C. Thus, Σe = σ2

TIn is used in the likelihood function (2), where n is the number
of observations.

The geological setting of geothermal reservoir model we demonstrate here is summarized
in Cui (2010). The model covers a volume of 12.0 km by 14.4 km extending down to 3050
meters below the sea level. Relatively large blocks were used in the outside of the model
and then they were progressively refined near the wells to achieve a well-by-well allocation
to the blocks. The 3D structure of the forward model has 26, 005 blocks, which is shown in
plot (a) of Figure 6, where the blue lines in the middle of the grid are wells drilled into the
reservoir. To speed up the computation, a ROM based on a coarse grid with 3, 335 blocks
is constructed by combining adjacent blocks in the x, y and z directions of the forward
model (see plot (b) of Figure 6). A coarser level of grid resolution is not used here because
further coarsening of the grid structure would produce a model that cannot reproduce the
convective plume in the reservoir. Each simulation of the forward model takes about 30
to 50 minutes CPU time on a DELL T3400 workstation, and the computing time for the
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Fig. 2. IACT of the log-likelihood function, ADAMH with Approximation 3 (left column) and 5 (right
column). Top row: Normalized autocorrelation, middle row: estimated IACT, bottom row: traces of
log-likelihood.
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Fig. 6. The fine grid (left) and the coarse grid (right) used for natural state modelling.

ROM is about 1 to 1.5 minutes (roughly 3% of the forward model). The computing time
for these models is sensitive to the input parameters.

4.3.1. Prior modelling of permeabilities

Previously, the rock structure of the model was pre-assigned by a geologist, and each rock
type covers a range of grid blocks. From manual calibration of the model, we found that
the permeability may not have a very good correspondence with the type of rock, and it
has a large variation depending on the location. To capture these variabilities, we employ a
low-level pixel based representation with the same resolution as the coarse grid used by the
ROM. Therefore, the permeabilities in x y, and z directions are represented by N = 3, 335

dimensional vectors k(ζ) = [log10(k
(ζ)
1 ), . . . , log10(k

(ζ)
N )], ζ ∈ {x, y, z}.

Because there is no point measurement and other direct survey (e.g., seismic data) of
the permeabilities available for this reservoir, we assume the permeabilities in x, y and z
directions are uncorrelated. A first order Gaussian Markov random field (GMRF) model
(Rue and Held, 2005) is employed to formulate the prior distribution for each of the x, y,
and z direction of permeabilities. Let i ∼ j denote that two blocks i and j are adjacent to
each other. The prior has the form of

π(k(ζ)) ∝ exp







−δζ
∑

i∼j

ωij

[

log10(k
(ζ)
i )− log10(k

(ζ)
j )

]2







, (19)

where ωij is the inverse Euclidean distance between the two adjacent block centers, and δζ
is a hyperparameter controls the smoothing (has different meaning with the δ in Section
3). We take the hyperparameter δζ = 0.5 for all ζ ∈ {x, y, z}, a value suggested by the
trial runs of MCMC. With this setting, the posterior distribution is still dominated by the
likelihood function, and hence the model parameters are determined by the data. The prior
provides a minor constraint to enforce the condition that the permeabilities are smooth.

4.3.2. Prior modelling of boundary conditions

The top of the model is assumed to be “open”, which allows the model to have direct
connection with the atmosphere. Atmosphere pressure and temperature are used as the
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Fig. 7. Location of control points of the RBF model for mass input distribution (red circles) and one
realization of the distribution of hot water injection at the base of the model.

boundary conditions at the top of the model. The model covers a sufficiently large area so
that the flows through the side of the boundary are negligible in the natural state modeling,
and hence the sides of the model are treated as no-flow boundaries.

At the base of the model, a distribution of very hot water is injected to represent the
upflow from depth, which also has to be estimated. A radial basis function (RBF) with
kernel function

C(s, s′; r) = exp

[

−

(

‖s− s′‖

r

)2
]

is used to represent the distribution of the injected hot water. Where s = (x, y) denotes
the location of the control points. Because the distribution of the injected hot water is
unknown, we use a set of evenly spaced control points, with fixed locations to parametrize
the distribution. These control points spans a sufficiently large area to cover all the possible
locations of injected hot water as indicated by the location and orientation of known faults
in the system (M. J. O’Sullivan, unpublished report, 2006). The hyperparameter r is set to
have a fixed value of 300 meters, which is empirically adjusted so that each control points has
a sufficiently large coverage area, and the overall distribution does not have any spikes. The
set of M control points S = {si}

M
i=1 and one realization of the mass input distribution are

shown in Figure 7. The blue circles around the control points are the resistivity boundaries
obtained from geological survey, which indicate the hot region of the reservoir.

In a full Bayesian way, a hierarchical posterior should be used to model the hyperparam-
eter r in the RBF function, the standard deviation σT in the likelihood function, and the
hyperparameter δζ used in the prior model of permeabilities. Then, MCMC sampling could
be used to either estimate or marginalize these parameters. However, correlation between
these parameter and other model parameters could make this process computationally in-
feasible, because the resulting hierarchical posterior is usually difficult to sample from, and
hence requires a large number of iterations in MCMC sampling. Since a fully Bayesian
treatment of these parameters is still limited by the computational power available, instead
in this research, we use empirical estimates of these quantities that are deduced from ei-
ther expert judgment or previous trial runs of MCMC. The limited computational power is
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allocated to exploring the model parameters.
By assigning weights w = {wi}

M
i=1 to each of the control points, the distribution of the

water injection (with unit [kg/(m2 · s)]) for a given point s′ is

f(s′ | w,S, r) =

M
∑

i=1

wiC(si, s
′; r). (20)

The total amount of mass is a fixed value about 105kg/s, which is deduced from the surface
flow data of the reservoir. Integrating Equation (20) gives the constraint on w, which is
∑M

i=1 wi = 3.7136 · 104. Also, all the weights wi must be non-negative to ensure that the
distribution of mass injection (20) is non-negative.

4.3.3. MCMC sampling

Overall, we have the parameters x =
{

k(x),k(y),k(z),w
}

to be estimated. The permeabili-
ties are separated into 68 groups, and a modified adaptive Metropolis proposal are used for
each of these groups. The weights of the distribution of the water injection w are adjusted
separately by an adaptive reversible jump move. These proposals produce a first step accep-
tance rate of 0.1 in ADAMH, for details of these proposals see Cui (2010). Since the forward
model is computationally very demanding, we first simulate the chain with the ROM only
for about 200 sweeps of updates (each sweep of updates consists of 69 iterations to update
all the elements of the parameter) to get through the initial burn-in period. Then, we start
ADAMH with Approximation 5 and the ROM (9) to sample from the posterior distribution
based on the forward model. Note that the adaptation of the proposals are started at the
beginning of the sampling of the posterior distribution based solely on the ROM.

We are able to sample the posterior distribution for about 11, 200 iterations in 40 days,
and ADAMH achieves about 74% accpetance rate in the second step. The estimated upper
bound of the speed-up factor is about 7.7. The trace plot of the log-likelihood function
and estimation of its IACT are shown in Figure 8, where the first 40 sweeps of updates
are discarded as burn-in steps. It was obtained by using the MATLAB code provided by
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Fig. 9. Comparison of estimated temperatures and measured data. The solid black lines are the es-
timated mean temperatures, dashed black lines are the 95% percent credible interval, and measured
data are shown as red crosses. The green and gray lines represent outputs of the foaward model
and the ROM various realizations, respectively.
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Fig. 10. Distributions of model temperatures, unit is o

C. (a): the mean realizations, (b): standard
deviations of realizations, (c): one realization from the Markov chain, and (d): another realization
from the Markov chain.

Wolff (2004). The IACT the log-likelihood function is about 2.80, which is only a rough
estimation because the chain has not been running long enough. Thus, we roughly have
one independent sample for every 5.6 sweeps of updates.

The mean and standard deviation of the temperature profiles are estimated as sample
averages over model realizations. We compare these estimations with the measured data
in Figure 9. The solid black lines are the estimated mean temperatures, dashed black
lines are the 95% percent credible interval, and measured data are shown as red crosses.
The green and gray lines represent outputs of the foaward model and the ROM various
realizations, respectively. Figure 9 shows that the forward model and the ROM produce
significant different temperature profiles. We can observe that there exist structure error
between the forward model outputs and the ROM outputs, and the forward model is hotter
than the ROM in average. The mean model reduction error at each of the measurement
position span a range of [−33.64, 54.98], and hence the noise level of these model reduction
errors are more significant than the zero mean normal distribution with standard deviation
σe = 7.5 ◦C used in the likelihood function. Hence, the statistical modeling of the model
reduction error in Section 3 is essential for the efficient use of the ROM in this research.

The temperature distributions are shown in Figure 10, where (a) shows the mean tem-
perature distribution, the standard deviation of the temperature distribution is shown in
(b), and the temperature distributions of the two realizations from the Markov chain (one
from the middle and another from the end) are presented in (c) and (d). From these plots,
we can observe that there is one hot plume in the model, and the top and the bottom of
this hot plume have larger variations in temperature than the rest of the model.

Most of the estimated model temperatures agree with the measured data very well,
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the root mean square error is in the range of [7.11, 8.66], with mean value of 7.22. The
assumption that the residuals follow a Gaussian distribution with standard deviation σe =
7.5 ◦C is validated by the normal quantile plot and the cumulative density plot of the
residuals (see Figure 11). The normal quantile plot shows that the residuals are symmetric
and roughly follow the Gaussian distribution in the interval [−10, 10], where most of them
are located. Outside of this range, the residuals are slightly skewed (light tailed below -10
and heavy tailed above 10). The same result is suggested by the cumulative density plot.
Overall, these plots show that the normality assumption is reasonable.

We also present the mean estimations, standard deviations and two realizations of the
distribution of mass input and permeability distribution in the x, y, and z directions in
Figure 12 - 15. In these figures, (a) is the mean estimation, (b) is the standard deviation,
and two realizations are shown in (c) and (d).

The mean distribution of the mass input shows that most of the injected hot water
occurs at the bottom of the inner resistivity boundary. This corresponds to the opinion of
geologists that the major source of deep hot water occurs at the intersection of two geological
faults in this area. The standard deviation and two realizations of this distribution suggest
that the variation among the samples is very small.

The reasonably large variations in the reconstructed permeability distributions suggest
that there exists ambiguities in the permeability distributions, and this may be caused
by the sparsely measured data. This effect is more significant in the region close to the
boundary of the reservoir, where no measured data are available. We can either give more
accurate quantifications to these ambiguities by running the chain for a very long time,
or remove these ambiguities by imposing a stronger prior distribution or using different
parameterizations of the permeability distributions.

5. Discussion

We developed an adaptive delayed acceptance Metropolis-Hastings algorithm for efficient
sampling the computationally demanding posterior distribution occurs in inverse problems.
ADAMH improves the computational efficiency of the standard MH algorithm by employing
an approximate posterior distribution based on a reduced order model. Components of the
delayed acceptance MH algorithm (Christen and Fox, 2005), the enhanced error model
of Kaipio and Somersalo (2007), and adaptive MCMC (Haario et al., 2001; Roberts and
Rosenthal, 2007) are used to construct ADAMH. By using the regularity conditions provided
in Section 3, several adaptive approximate posterior distributions are designed.

As shown in the first example, ADAMH improves the accuracy of the approximation
significantly without extra computing time by using EEM and adaptive sampling, and hence
improve the computational efficiency of sampling. The state dependent approximation 5
with the ROM (9) have the best performance over all approximations. ADAMH with
Approximation 5 is used to sample the posterior distribution of the large scale 3D geothermal
reservoir model in the second example. We are able to run the MCMC sampling for about
11, 200 iterations in about 40 days, which would takes about 10 months for the standard
MH algorithm. The significant speed-up offered by ADAMH would allow MCMC method
to be applied to inverse problems that on the limitation of the computing power.

The ROM we used here is based on coarsening the grid structure of the forward model.
Even through the ROM (9) is state dependent by adding a local correction term, the overall
structure of the ROM is fixed during the sampling. Based on the conditions supplied in
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Fig. 11. (a): Normal quantile plot of the residuals. (b): Cumulative density plot of the residuals, the
solid line is the estimated cumulative density function, and the dashed line indicates the Gaussian
distribution used in the assumption.
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Fig. 12. Distributions of mass input at the bottom of the model, unit in kg/s. (a): the mean realizations,
(b): standard deviations of realizations, (c): one realization from the Markov chain, and (d): another
realization from the Markov chain.
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Fig. 13. The permeability distribution on x direction, in base 10 logarithmic scale. (a): the mean
realizations, (b): standard deviations of realizations, (c): one realization from the Markov chain, and
(d): another realization from the Markov chain.

Fig. 14. The permeability distribution on y direction, in base 10 logarithmic scale. (a): the mean
realizations, (b): standard deviations of realizations, (c): one realization from the Markov chain, and
(d): another realization from the Markov chain.
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Fig. 15. The permeability distribution on z direction, in base 10 logarithmic scale. (a): the mean
realizations, (b): standard deviations of realizations, (c): one realization from the Markov chain, and
(d): another realization from the Markov chain.

Theorem 1, other more sophisticated model reduction techniques such as projection based
methods (Grimme, 1997; Li, 2002) can be used to construct ROMs that adapts to the local
structure of the forward model. Further investigations are necessary to integrate these
techniques into ADAMH.
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