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Abstract This paper presents a mathematical study of ßexural motion of ßoating
ice, including hydrodynamic effects, to derive a scaling law by reducing
the deep-water dispersion equation to scale-independent form. The scal-
ing shows that the well-known characteristic length, lc = 4

p
D/ρg and

less well known characteristic time, tc =
p
lc/g, are unique in reducing

solutions to canonical, scale-independent, form. The canonical solutions
show that ßexural motion is quasi-static for periods much greater than
2πtc , and is dynamic for shorter periods, with signiÞcant propagating
waves. These conclusions are largely independent of the geometry of
the ice sheet under consideration, the surrounding ice/water conditions,
or distribution of applied forcing.

1. Introduction

The ßexure of ßoating ice dominates its behaviour in the interaction
between ocean waves and sea ice (Squire, 1978) and also in the interac-
tion between slowly moving ßoating ice and sloping structures (Sodhi,
1987). The ßexural response of typical sea ice occurs over length scales
of roughly 20 metres to 2 kilometres and time scales of 2 seconds to 20
seconds, while the responses for lake ice and tank tests occur at shorter
scales.
Fig. 1 shows a region of water of depth H which has some open water

and some cover of uniform-thickness ice. We denote by Ω the region in
the horizontal (x, y) plane that the ice covers. Over the time and length
scales important for ßexural motion, the ice is well modelled as a thin
elastic plate with an effective ßexural rigidity D, and the water can be
taken to be an incompressible ßuid with density ρ. I have shown the
ice-water interface as a straight line, but that is not important for the
conclusions here. Indeed, the scaling applies to any piece of ßoating ice
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Figure 1. Schematic of a region of ice-covered water with the associated water
column. The coordinate system is shown.

that has uniform ßexural rigidity, independent of the shape of the ice
sheet (or ßoe) and whether the surrounding water is open or has partial
ice cover.
The scaling law derived here is relevant when we focus on the ßexural

motion of the ice cover. The main properties of the scaling are presented
next, and in the remainder of the paper the scaling law is derived and
the particular properties established in detail.

1.1. The scaling law in brief

In situations where the ice response is primarily ßexural, it is most useful
to scale length variables by the characteristic length, lc, and time by the
characteristic time, tc, deÞned by

lc =

µ
D

ρg

¶1/4
and tc =

s
lc
g
, (1)

respectively. The scaling has the following properties:
When the water is deep (I discuss what this means later), different

situations that are geometrically equal in the non-dimensional variables
(x̄, ȳ) = (x, y)/lc have almost exactly the same ßexural response as a
function of (x̄, ȳ) and the non-dimensional time t̄ = t/tc. Hence, by
using this scaling, tank tests can be designed to have ßexural responses
that are equivalent to Þeld tests.
Scaling to non-dimensional variables has a second advantage which is

that the canonical solutions, in the non-dimensional variables, allow us
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to identify the distinct regimes of physical behaviour that occur in the
ßexure of ßoating ice. These regimes depend on the frequency (or rate)
of the applied force, and are largely independent of the size or shape
of the ice, or on the distribution of the applied force. At low forcing
frequencies, speciÞcally when ω̄ = ωtc ¿ 1, the response is quasi-static
with the ice motion being just the static ßexural response moving in
phase with the forcing. At high frequencies, ω̄ = ωtc À 1, the response
is dynamic with travelling waves generated in the ice cover and the ice
motion is not in phase with the forcing. At close to unit non-dimensional
frequency, ω̄ = ωtc ≈ 1, the force couples most effectively to the ice sheet
and so the ßexural response is generally dominated by this frequency.
For example, an impact on the ice will generate a packet of waves with
centre frequency close to 1/(2πtc) and wavelength close to 2πlc that
travels away from the impact with group and phase velocities nearly
equal to vc = lc/tc.
This scaling is unique in reducing the response to canonical forms

that depend on the scaled variables only. While other reductions to
non-dimensional variables are sometimes used, they do not have the
desirable property of simplifying considerations of ice ßexure.
By examining the way the canonical solutions vary with water depth,

we may also determine the water depth beyond which the ocean bottom
does not affect the ice motion, i.e. the depth that can be considered
�deep�. When the force is applied locally, we Þnd that the water is deep
when H/lc > 6. When the force is applied coherently over an inÞnite line
(not a situation that normally occurs in nature) the water needs to be
approximately twice that depth to be deep, i.e. H/lc > 12. In particular,
note that the depth that is deep depends only on the characteristic length
� and hence the ice sheet ßexural rigidity � and not on the wavelength
of incoming waves as sometimes (mis)stated.

2. Derivation of the scaling law

In the remainder of this paper I substantiate these properties by deriving
the scaling and establishing these properties in detail. The scaling is
found by deriving a formal solution for the ice motion via a spectral
expansion, writing the solution as an inverse transform involving the
dispersion equation, then showing that any solution may be scaled to
canonical form by scaling the dispersion equation.

2.1. Mathematical formulation

The vertical displacement of ice, η (x, y, t), is related to the (upward)
pressure applied on the ice, pa (x, y, t) and the velocity potential in the
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water φ (x, y, z, t), by the system of differential equations and boundary
conditions (Greenhill, 1887; Fox and Squire 1994)

D∇4x,yη +mηtt + ρgη + ρφt = pa z = 0 (2a)

ηt = φz z = 0 (2b)

φz = 0 z = −H (2c)

∇2x,y,zφ = 0 −H < z < 0 (2d)

Eqn. 2a models a thin plate along with the linearized Bernoulli pressure.
In the plate equation, the ßexural rigidity, D, is often related to the ice-
sheet effective Young�s modulus, E, thickness, h, and Poisson�s ratio, ν,
via the expression D = Eh3/(12(1−ν2)). The mass density m is related
to the density of the ice, ρi by m = hρi. Eqn. 2b is the kinematic
boundary condition between the water and ice, Eqn. 2c models a solid
bottom, and Eqn. 2d represents the water being incompressible and
inviscid.

2.2. Spectral solution

The dispersion equation arises from writing the forcing and ice motion
as expansions over modes of the system. For physical systems like this
one, where the physical properties are constant in time and piecewise
constant in space, the modes are the wave-like functions ei(ωt−k·(x,y)),
where k is the vector wave-number in the (x, y)-plane and ω is the radial
frequency. The restricted Fourier transform that gives the coefficients in
a modal expansion of surface displacement is

η (k,ω) =

Z
T

Z
Ω
η (x, y, t) ei(k·(x,y)−ωt)dxdydt (3)

and similarly for φ. We take the time interval T = (−∞,∞) giving the
usual Fourier transform to Þnd the steady-state frequency response, or
transfer function. Note that we use the same symbol for the transformed
functions; the action of each function is implicitly determined by its
arguments. We will calculate the inverse transform (over all wavenumber
space R2) to give

η (x, y,ω) =

Z
R2
η (k,ω) ei(ωt−k·(x,y))dk (4)

which is the spatially-dependent transfer function from forcing to dis-
placement of the ice-covered region (and zero elsewhere). A similar
inverse transform gives the potential φ (x, y, z,ω).
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Algebraic expressions for η (k,ω) and φ (k, z,ω) can be found by trans-
forming the differential equation 2a using the Green�s identityZ

Ω
ψ∇4η d (x, y) =

Z
Ω
η∇4ψ d (x, y)

+

Z
∂Ω

¡
ψ∇3η −∇2η∇ψ +∇η∇2ψ − η∇3ψ¢ · dl

and equation 2d using the Green�s identityZ
Ω
ψ∇2η d (x, y) =

Z
Ω
η∇2ψ d (x, y) +

Z
∂Ω
(ψ∇η − η∇ψ) · dl

and imposing the two boundary conditions 2b and 2c. Here dl is the
outward surface element of the boundary ∂Ω. Setting ∇ = ∇x,y, ψ =
eik·(x,y), and writing k = |k|, we Þnd¡

Dk4 + ρg −mω2¢ η + iρωφ = pa + b1 (5a)

φzz − k2φ = b2 (5b)

where the inhomogeneous terms b1 (k,ω) and b2 (k,ω) are given by the
integrals over ∂Ω. Since eik·(x,y) does not satisfy any particular boundary
condition, these functions will depend on the solution which is unknown
a priori. For our purposes we simply need to note that for physical
problems, where displacements and velocities are Þnite, these terms are
bounded linear functions of the forcing. The ordinary differential equa-
tion 5b may be solved along with the condition 2c to determine that the
relation between φ and φz at the surface

k tanh (kH)φ (k, z,ω) |z=0 + b3 (k,ω) = φz (k, z,ω) |z=0
where the function b3 depends on the particular solution to 5b. Using
the transformed version of Eqn. 2b then allows solution of Eqn. 5a to
give the spectral solutions

η (k,ω) =
b (k,ω)

d (k,ω)
and φ (k, z,ω) =

b (k,ω)

d (k,ω)

iω cosh k (z +H)
sinhkH

(6)

where b (k,ω) is a linear function of the forcing that depends on the
geometry, and d (k,ω) is the dispersion equation

d (k,ω) = Dk4 −mω2 + ρg − ρω2

k tanh kH
. (7)

It suffices to consider the simplifying case where the geometry is such
that b (k,ω) depends on k = |k| over its support; we will see two such
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Figure 2. Schematic of the set K: roots of the dispersion equation in the upper
half-plane.

cases in the next section. Then, for each ω, the integrals like 4 are over
the real k-axis and can be performed as complex integrals by completing
the contour in the upper complex k-plane. Hence the integral equals a
sum over the poles of the integrand, which are the roots in the upper-half
plane of d (k,ω). This set of roots of d is denoted K, and is shown (not
to scale) in Fig. 2. The dispersion equation always has one positive real
root kT corresponding to a propagating wave, two complex roots with
positive imaginary part, kD and −k∗D, giving damped travelling waves,
and a countably inÞnite number of pure positive imaginary roots, ikn
n = 1, 2, · · · , each giving an evanescent wave (Fax and Squire, 1990).
Since d is even in k (as is b), we actually write η (k,ω) as the Mittag-

Leffler expansion for each ω

η (k) =
b (k)

d (k)
=
X
q∈K

2qb (q)R (q)

k2 − q2 (8)

and similarly for φ. Here R (q) is the residue of 1/d at the pole q,

R (q) =

Ã
∂d

∂k

¯̄̄̄
k=q

!−1
. (9)

The details of the inverse transform depend on the way that b depends
on k, and hence depends on the geometry, but is should be clear that
for a given geometry the solution is entirely a function of the position of
the roots of the dispersion equation.

2.3. Fundamental solutions

The simplest solutions are where unit harmonic force is applied at the
origin of an inÞnite ice sheet, then pa = δ (x, y) eiωt, or along a line say
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y = 0 when pa = δ (x) eiωt. Since there are no boundaries b1 = 0 and
b2 = 0 in Eqns. 5, and so b = 1 in Eqns. 6 and 8, though the support
is different for the two forcings. Substituting 8 into 4 and performing
the simple integral (Abramowitz and Stegun, 1972 formula 11.4.44 with
ν = 0, µ = 0, z = −iq and a = r and formula 9.6.4) gives the �free-
space� fundamental solution, i.e. the response due to point forcing

ηP (x, y) =
i

2

X
q∈K

qR (q)H
(1)
0 (qr) (10)

where H(1)
0 is a Hankel function of the Þrst kind, and r =

p
x2 + y2 is

the distance from the point of forcing. The surface displacement for line
forcing is given by a similar inverse transform resulting in the sum

ηL (x, y) = i
X
q∈K

R (q) exp (iq |x|) . (11)

2.4. Deep-water solutions

When the water is very deep, i.e. in the limit H →∞, the sum over the
imaginary roots tends to an integral over the positive imaginary semi-
axis. After considerable calculation it is possible to write the resulting
solutions as sums over the roots of the modiÞed deep-water dispersion
equation (Eqn. 7 with H → ∞) for Re (k) > 0, analytically continued
to the whole complex k-plane:

Dk5 +
¡
ρg −mω2¢ k − ρω2 = 0. (12)

Let Kd = {kT, kD, k∗D, kE, k∗E} denote the set of roots (kT and kD as
before, kE has positive imaginary and negative real parts). The residue
of η at a pole q ∈ Kd is

Rd (q) =
q2

5ρω2 − 4 (ρg −mω2) q . (13)

Note that the residues at kT, kD and k∗D, are the same as deÞned pre-
viously in Eqn. 9, and we denote these RT, RD and R∗D, respectively.
Write RE = Rd (kE) and hence R∗E = Rd (k

∗
E). The response to point

forcing in the deep-water limit can be written in terms of these poles of
η as

ηP (r) =
i

2
kTRTH

(1)
0 (kTr)− kTRT

4
h (kTr)− Im

h
kDRDH

(1)
0 (kDr)

i
− 1
2
Re (kDRDh (kDr)) +

1

2
Re (kEREh (−kEr)) , (14)
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where h (qr) = H0 (qr) − Y0 (qr). The response to line forcing in the
deep water limit can be written as,

ηL (r) = iRT exp (ikTr) +
RT
π
g (kTr)− 2 Im [RD exp (ikDr)]

+
2

π
Re [RDg (kDr)] +

2

π
Re [REg (−kEr)] (15)

where g (qr) = −Ci(qr) cos (qr)−si(qr) sin (qr). The terms in equa-
tions 14 and 15 involving the functions h and g are the contributions
from the integrals over the imaginary axis.
Graphs of these solutions are given in section 5.

3. Scaling

The scaling to normalized (and non-dimensional) form is based on the
structure of the roots of the modiÞed deep-water dispersion Eqn.12.
Since deßections given in Eqns. 14 and 15, are continuous functions of
the roots, simplifying the structure of the roots corresponds to simpliÞ-
cation of the solutions.
When k is small, ω is also small, giving k5 ≈ 0,

¯̄
mω2

¯̄ ¿ ρg, and
hence k ≈ ω2/g. Thus for long wavelengths, and hence long periods, the
dispersion equation is the same as for water waves with k ∝ ω2 and with
no dependence on the ice-sheet thickness or mass density m.
On the other hand when k is large, ω is also large, and for typical val-

ues ofm we Þnd that Dk5 À ¯̄¡
ρg −mω2¢k¯̄ and hence k ≈ ¡ρω2/D¢1/5.

Thus for short wavelengths, and short periods, k ∝ ω2/5h−3/5. The de-
pendence of k on ice sheet thickness h comes via the ßexural rigidity,
but note that again the effective dispersion equation is not dependent
on the ice-sheet mass density.
The two relations k ≈ ω2/g and k ≈ ¡

ρω2/D
¢1/5 are straight lines

on a log k - logω graph which intersect at the point k = 4
p
ρg/D and

ω = 8
p
ρg5/D (for example see Fox and Squire (1994) Þgure 2). The

log k - logω graphs for different values of D can be made to coincide
by putting the intersection at the common point (1,1) via the scaling to
normalized variables k̄ = klc and ω̄ = ωtc by the characteristic length
and time deÞned in equation 1.
The resulting graph of scaled roots of the dispersion equation as a

function of ω̄ is shown in Fig. 3 for three values of ßexural rigidity,
D, corresponding to ice-sheet thicknesses of h = 0.1 m, h = 1 m, and
h = 10 m when the effective Young�s modulus takes the typical value of
5× 109 Pa and the density of ice is ρi = 922.5 kg m−3. The magnitude
of the real and imaginary parts of the three roots k̄T, k̄D, and k̄E, are
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Figure 3. Graph of kT (log scale) and the real and imaginary parts of kD and kE as
a function of ω̄ (log scale) for three ßexural rigidities corresponding to ice thicknesses
h of 0.1, 1 and 10 metres.

graphed. Increasing h corresponds to increasing k̄T and Im
¡
k̄D
¢
(the

upper two sets of curves for ω̄ > 2) and to decreasing values of−Re ¡k̄D¢,
Im
¡
k̄E
¢
and Re

¡
k̄E
¢
(the lower three sets of curves for ω̄ > 2).

Note that the scaling has the effect of making the three scaled curves
for the travelling-wave number, k̄T, very nearly identical for all frequen-
cies, and the curves of the real and imaginary parts of the other roots
near to overlapping. Hence, this scaling to non-dimensional variables
reduces the solutions to a canonical solution depending on ω̄ only � and
is unique in achieving that.
It is interesting to note that other non-dimensional formulations are

possible which do not give a useful reduction to canonical solutions for
the range of parameters typical in sea ice dynamics. For example, at
very large k,

¯̄¡
ρg −mω2¢¯̄k À ρω2 andmω2 À ρg giving the asymptote

k ≈ ¡mω2/D¢1/4. Putting the intersection of this relationship and the
small-k relationship at a common point leads to a different characteristic
length and time than derived above. This scaling would be relevant in
cases where ice has ten times its actual density (though then the ice
sheet would sink). However, it does not have the property of making
the wave-number vs frequency graphs overlap for typical mass densities
and for periods where the solutions are appreciable.
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4. Quasi-static and dynamic regimes

Fig. 3 also shows that the non-dimensional frequency ω̄ = 1 sets a
transition between distinct regimes in the frequency-wavelength rela-
tionship, and hence in the mechanism that dominates the ice ßexure.
The identiÞcation of the distinct regimes of behaviour is the most valu-
able consequence of the scaling law.
At low frequencies, ω̄ ¿ 1, we see k̄T ≈ 0 while k̄D ' (1+i)/

√
2 and

k̄E ' (−1+i)/√2. Since RT → 0 as k̄T → 0, the coefficient of any
travelling wave is small and the solution is reduced to the contributions
due to the complex roots, only. Thus the range ω̄ ¿ 1 has just the
single quasi-static solution which is essentially the static solution moving
in phase with the harmonic loading. In this regime inertial effects are
negligible.
At high frequencies, ω̄ À 1, k̄T is no longer small and the solution is

dynamic since an appreciable travelling wave is generated by the forcing.
In this regime k̄T ≈ ω̄2/5, and hydrodynamic effects play a signiÞcant
role in the ice ßexure.
The region ω̄ ≈ 1 sets a range of intermediate behaviour in which the

coupling between the load and the ice sheet is greatest. This frequency
will dominate the ßexural response when the forcing contains a range of
frequencies.

4.1. The approximation m = 0

Fig. 3 shows that the locus of the three roots made nearly identical, for
a wide range of ice thicknesses, by using a scaling based on the ßexural
rigidity only; the effect of thickness via mass density is not signiÞcant.
Hence setting m = 0 does not greatly affect the solutions. However, the
small difference in the positions of the roots, for differing m for given D,
does cause a difference in solutions which is primarily a decrease in the
wavelength of the travelling wave with increasing m. The same decrease
in wavelength occurs, to Þrst order, by setting m = 0 and increasing
frequency by the multiplicative factor (1+mkT/2).

5. Canonical solutions

Fig. 4 shows the response to point forcing as a function of non-dimensional
distance from the forcing, r, in the low frequency (ω̄ = 0.2), unit fre-
quency, and high frequency (ω̄ = 5.0) regimes. The real and imaginary
parts of the solution are shown for inÞnite water depth, calculated using
Eqn. 14. The solutions for the Þnite depth H/lc = 2π, calculated using
Eqn. 10 are visually identical to the graphs shown. Note that at low
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Figure 4. Magnitude, real part and imaginary part of displacement for point forcing
at non-dimensional frequencies 0.2, 1.0, and 5.0, as a function of non-dimensional
distance from the point of forcing, assuming deep water.

frequencies only the real part of the solution is appreciable and hence the
response is in phase with the forcing. For frequencies above about unit
nondimensional frequency the imaginary part of the solution is appre-
ciable, actually larger than the real part near the point of forcing, and so
energy is transferred into the ice, with amplitude of the travelling wave
being greater for ω̄ = 1 than ω̄ = 5.
Canonical solutions for line forcing are shown in Fig. 5, also as a

function of non-dimensional distance from the line of forcing, |x|, in
the three frequency regimes. For line forcing, the solutions in the low
frequency regime differ for inÞnite water depth and for H̄ = 2π, and so
the solution for H̄ = 2π and ω̄ = 0.2 has been included. At the higher
frequencies ω̄ = 1.0 and ω̄ = 5.0 the solutions for the two depths are
visually identical.
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Figure 5. Magnitude, real part and imaginary part of displacement as a function
of non-dimensional distance from line forcing at non-dimensional frequencies 0.2, 1.0,
and 5.0. For ω̄ = 0.2 the depths H̄ = 2π and H̄ =∞ are shown, while for the other
frequencies only the response for H =∞ is shown.

5.1. Water depth

Figs. 6 and 7 show the real (in-phase with the forcing) and imaginary (in
quadrature to the forcing) parts of the solutions at the location of forcing
for three scaled water depths, H̄ = H/lc, as a function of normalized
frequency.
We can conclude from these Þgures that the depth beyond which the

water may be considered to be effectively inÞnitely deep depends on the
nature of the forcing. For forcing that is localized and may be treated
as a point, non-dimensional water depths greater than 2π, i.e. actual
depths approximately 6 times the characteristic length, are deep for any
rate of forcing. However, for forcing that occurs along a line, the non-
dimensional depth 2π is not deep, particularly for low-frequency forcing.
Instead, actual depths of 12 times the characteristic length are required
for the water to be deep at any rate of forcing.
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Figure 6. Real and imaginary parts of the displacement at the point of forcing as a
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Figure 7. Real and imaginary parts of the displacement at the line of forcing as a
function of normalized frequency, for three non-dimensional water depths.

5.2. Velocity effects

The characteristic velocity vc = lc/tc sets the boundary between regimes
of behaviour in the response to moving loads of ice ßoating on moderately
deep water (Squire and others, 1996). Since the travelling wave with
unit normalized frequency has period 2πtc and wavelength 2πlc, vc is
the phase speed of the dominant propagating wave. Note that the slope
of the log k versus logω graph equals the ratio of group speed to phase
speed. These two speeds are equal when the slope in Fig. 3 equals 1
which also occurs at unit normalized frequency.
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6. Conclusions

It has been shown that the characteristic length, derived by Wyman
(1950) for the static case, gives the appropriate length scale for both
static and dynamic responses. The characteristic time gives the nat-
ural scaling in time that separates the response into quasi-static and
dynamic regimes. Since the scaling reduces the dispersion relation to
a single graph, any dependence of the scaling on physical parameters
was effectively removed and therefore we may conclude that the scaling
applies to any geometry or applied forcing.
Scaling by characteristic length and time is therefore the best way of

comparing Þeld tests and laboratory tests of ice ßexure. Consequently,
measurement of characteristic length (or time) gives the primary prop-
erty of a ßoating ice sheet that determines its ßexural response. In
contrast, the ice thickness h, for a given ßexural rigidity D, plays a very
minor role in determining the ßexural dynamics.
Once the characteristic length of a ßoating ice sheet is known, even

approximately, the water is known to be deep ifH > 6lc for point forcing,
or H > 12lc for line forcing.
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