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ABSTRACT

We examine sample based Bayesian inference from impedance imaging data. We report experiments employing low
level pixel based priors with mixed discrete and continuous conductivities. Sampling is carried out using Metropolis-
Hastings Markov chain Monte Carlo, employing both large scale, Langevin updates, and state-adaptive local updates.
Computing likelihood ratios of conductivity distributions involves solving a second order linear partial di�erential
equation. However our simulation is rendered computationally tractable by an update procedure which employs a
linearization of the forward map and thereby avoids solving the PDE for those updates which are rejected.
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1. INTRODUCTION

Conductivity imaging, also known as electrical impedance tomography (EIT), is not yet established as a workable
imaging technique. The best reconstructions obtained to date1 have very low resolution and are hard to interpret.
The question is, is this low resolving power an inherent weakness of the physical imaging process, or is it an artifact
of the data analysis. We are unable to give a �nal answer, since we have not yet obtained real data for trial analysis.
However our experiments with synthetic data, which we present below, indicate substantial improvements on existing
inversion methods are to be made.

We begin by de�ning the physical imaging process. Referring to Figure 1(a), electrodes are placed in contact
with an object, and a small current is applied through some of these electrodes. One of the non-current electrodes is
selected as a reference electrode, and the potential di�erence between each of the remaining non-current electrodes
and the reference is measured in volts. These measured potential di�erences depend on the unknown conductivity
distribution of material inside the object. In conductivity imaging we attempt to reconstruct the conductivity at
each point in the object using the known currents and the observed potentials.

The de�nitions which follow are from Fox and Nicholls.2 Consider the two-dimensional region, 
 with boundary
@
 shown in Figure 1(a). The conductivity � (units ohms�1) is an unknown function of position, �(x); x 2 
, in the
region. It may in practice be bounded above and below so that 0 < �min � � (x) � �max <1. Electrodes producing
�xed current source distributions J@
 = J@
(x) for x 2 @
 and J
 = J
(x) for x 2 
 are applied at the boundary
and in the interior of the region. The dimensions of J@
 and J
 are current per unit length and current per unit area
respectively. The electrical potential, �, is measured along the boundary. Within the region the potential satis�es
the partial di�erential equation

r �(�r�) = J
: (1)

If the region is otherwise insulated, the current crossing @
 is just J@
. Hence if nx is the unit outward normal on
the boundary @
, the boundary current density is

�
@�

@nx
= J@
: (2)

Suppose K electrodes are attached at the boundary of a region 
 at points xk 2 @
; k = 1; 2 : : :K. Let
E
 = fx1; x2 : : : xKg be the set of electrode positions. A pair of electrodes are chosen as anode and cathode and a
current of magnitude I0 is applied. A third reference electrode is chosen, and a voltmeter is connected between the
reference electrode and each of the other electrodes in turn, not including the anode and cathode, and a potential
is measured. Let ean; e

c
n and ern denote respectively the label of the anode, cathode, and reference electrode used in

each of the n = 1; 2 : : :N electrode arrangements, and let en = fean; ecn; erng. Since there are N = K(K�1)=2 distinct
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Figure 1. (a) Region 
 of spatially varying conductivity and with bounding curve @
. The choice of anode, cathode
and reference electrode shown corresponds to the choice ean = 1; ecn = 2 and ern = 3. The full measurement set is made
up of all electrode potentials, measured in turn for all distinct choices of anode and cathode. The index n indicates
a set of measurements associated with some particular choice of anode and cathode. (b) Electrode positions used in
the experiments section. The graph in (c) is the potential �eld �(xjn; s) for the conductivity of Figure 3(a), for one
of the n = 1; 2 : : : 120 electrode arrangements.

anode-cathode choices, we measure N , K � 3 component vectors, vn; n = 1; 2 : : :N . Let the current due to the n'th
electrode pair be Jn = fJ
;n; J@
;ng. The electrodes are modelled as point sources of magnitude I0, located in the
interior, so J@
;n(x) = 0 and

J
;n(x) = I0�(x� xea
n
)� I0�(x � xec

n
): (3)

We measure one vector vn for each of the current distributions J1; : : : JN generated by the N distinct current electrode
pairs. Note that these measurements are not all independent. We have a total of (K � 3) �K(K � 1)=2 values in
all, while only K(K � 1)=2 are independent, as we will see. For notational convenience we let vn be a K component
vector, so that vn(k) is the potential measured at the kth electrode in the nth electrode con�guration. The redundant
components vn(k) k 2 en are left unde�ned.

Let s(x) be the true conductivity at each point x 2 
, and let �(xjn; s) be the potential at x generated by current
distribution Jn in the conductivity s. Refer to Figure 1(c) for the potential function of an applied current distribution
in the conductivity of Figure 3(a). Let �(s) denote the N component vector of functions (�(xj1; s); : : : �(xjN; s)).
We suppose the voltage measurements are made in noise that is independent, additive and Gaussian, mean zero
and standard deviation d, whilst currents are measured exactly. Thus if �n(k) is a Gaussian random variable,
�n(k) � N(0; d2), we observe

vn(k) = �(xk jn; s) + �n(k); for each n = 1::N; k = 1::K; k 62 en: (4)

The potential at the reference electrode is �(xer
n
jn; s) � 0. The solution to the PDE, Equation (1), is determined

only up to an additive constant, and by setting �(xer
n
jn; s) = 0 we fully determine the solution. Now, given applied

currents J = (J1; : : : JN ) and data v = (v1; : : : vN ), the likelihood of a conductivity distribution �(x) is proportional
to exp(L(�jv; J)), where L(�) � L(�jv; J) is the log-likelihood, up to a term independent of �,

L(�) = �jv � �(�)j=2d2; with jv � �(�)j �
NX
n=1

KX
k=1

k 62en

(vn(k)� �(xk jn; �))2: (5)

In order to compute the likelihood, we must solve Equations (1) and (2) for �(xjn; �),
rx �(�rx�(xjn; �)) = I0�(x� xea

n
)� I0�(x� xec

n
) (6)

with
�@�(xjn; �)=@nx = 0; (7)

for each n = 1; 2 : : :N . The posterior for a conductivity distribution �, given observations v, generated by currents
J , is then Prfs 2 d�jv; Jg / Prfs 2 d�g exp(L(�jv; J)). We intend to sample the distribution Prfs 2 d�jv; Jg and
use these samples to answer questions concerning the unknown true conductivity s.



2. PROPERTIES OF THE INVERSE PROBLEM

For a �xed conductivity � (x) and for interior sources J
, the Dirichlet boundary value problem r � (�r�) = J

in 
 subject to boundary conditions �j@
 = V has a unique solution, �, which has current crossing the boundary

equal to J@
 = � @�@n . The map �� : V 7! J@
 is called the Dirichlet to Neumann map for given � (and J
). Note
that the di�erential equation is linear in � and, hence, so is �� . However, the relationship between � and �� is not
linear. The forward problem is then to determine �� given �. One simply solves the PDE. The inverse problem is:
determine � from incomplete measurements (J
;n; J@
;n; vn)

N
n=1 of �� .

A number of existence and uniqueness results3 hold for the inverse image of the nonlinear forward map, � 7! �� .
However, the issue of uniqueness of the inverse, per se, is not of practical importance and greater insight may be
gained by examining the singular value decomposition (SVD) of the the linearised forward problem. The right-
and left-singular vectors give the bases of conductivity and data, respectively, in which the linearised forward map
is diagonalised and hence reduced to component-wise multiplication by the singular values. With respect to those
bases, the singular values give the magnitude of the directional derivative of the forward map in each coordinate
direction and hence give the sensitivity of the forward map to small changes in conductivity.

The linearised forward map for imaging the conductivity of a disc, assuming complete measurement of �� , has
been shown to have singular values that are arbitrarily close to zero4 and hence the inverse is discontinuous. So the
idealised inverse problem is ill-posed. In the practical case of reconstructing a pixelised version of � from a �nite
number of data, the decreasing singular values cause the inverse problem to be very badly conditioned. For imaging
the conductivity of a disc which is close to homogeneous, with measurement accuracy of 0.1%, about 140 singular
values exceed the threshold mentioned above and thus there are about 140 independent structures of the conductivity
about which measurements can be made.4 Thus if direct inversion of the forward problem is attempted, any image
with more than 140 pixels must have correlations between pixels that are solely functions of the particular noise
realisation { and those spurious structures will tend to be large as a result of the small singular values. On the other
hand, reconstructing an image of conductivity with few pixels, e.g. 140, will not give good reconstructions as the
forward problem is poorly approximated unless the true conductivity happens to be piece-wise constant with the
same structure as the pixilation.

3. PREVIOUS APPROACHES TO CONDUCTIVITY IMAGING

Despite the inverse problem being very badly conditioned, with a theoretically discontinuous inverse, the vast majority
of e�ort into conductivity imaging has been to implement algorithms that seek to simply invert the forward operator.
It is not surprising, therefore, that the literature contains a conspicuous paucity of reconstructed images.

A review paper5 in 1989 Barber outlined a number of the direct-inversion schemes tried to that date. All of
those schemes sought to directly invert using a single, or iterated, inversion of an approximation to the nonlinear
forward map, � 7! �� , with the approximation relying on a single trial value of conductivity. An obviously good
choice for an approximation to the forward map is a local linearisation about a known conductivity as given by the
Fr�echet derivative. However, even though this linearisation was known early on,6 many early algorithms used ad

hoc approximate inverses often loosely based on `back-projection' as used in x-ray tomography.

More promising have been the direct inversion schemes using a local linearisation of the nonlinear forward map
to iterate towards a solution. Barber concludes that Yorkey's7 method was the best. Yorkey's method does not
employ a global regulariser on the reconstructed solution, but only a local regulariser on each linearised step. When
examined in detail, almost all of the iterative algorithms can be found to regularise the inversion of the forward map
implicitly in the numerical scheme used as opposed to the desirable situation of having an explicitly chosen means
of dealing with the ill-posedness.

In the statistical framework, the direct solution of the inverse problem is a ML estimate and su�ers from all
the usual problems when the forward mapping has a large range of sensitivities such as the reconstructed image
consisting mainly of ampli�ed noise. But a deeper problem with the algorithms outlined can be seen through each of
them being equivalent to some gradient-based algorithm for maximising the likelihood { or some implicitly modi�ed
likelihood. Gradient-based methods require the space of allowable solutions to be connected and convex because
iteration is performed by moving along search directions derived from local information. Thus it is very di�cult to
include high-level prior information such as \the conductivity at each point is one of �ve values" or \the image is a
�nite number of circular regions", etc, as would be desirable.



Since 1990 a number of authors have recognised that the inverse problem requires global regularisation and have
optimised an appropriately modi�ed objective function. An example of classical regularisation within an iterative
scheme is given by Hua et al.8 who propose using Sobolev-type norms as regularisers and provide results using the �rst
of these, namely the square-norm of the conductivity, using a Newton-Raphson technique to perform the resulting
optimization. Recently, Martin and Idier9 have compared Hua et al.'s method with one using a Markov random �eld as
prior within a Bayesian statement of the inverse problem. They used the sum of the convex Huber penalty function
of nearest-neighbour di�erences for their log-prior and calculated a MAP estimate (from an improper posterior)
using a gradient based optimiser. Since their prior prefers local smoothness with discontinuities, the reconstructions
provided of conductivities of this type are improved. As far as the present authors are aware, the few other Bayesian
formulations of conductivity imaging have been restricted to calculating MAP estimates with low-level priors and
are, therefore, not fundamentally di�erent to regularised inversion.

4. COMPUTING THE LIKELIHOOD

Let current distributions J = (J1; J2 : : : JN ) and a conductivity � be given. In order to compute the likelihood of
�, we need the �elds �(xjn; �) for x 2 E
. That is, we need the �eld at the electrodes only. Let g(xjy; �) be the
Neumann Green's function for the potential at x 2 
 given a point-like current source located at y 2 
, with a
uniform current sink along the boundary. That is, g(xjy; �) satis�es the PDE

rx �(�rxg(xjy; �)) = �(2)(x� y) (8)

with
�@g(xjy; �)=@nx = 1=j@
j; (9)

where j@
j is the length of the boundary. The Green's function is determined up to an additive constant. We �x
this by referring our Green's functions to a mean zero voltage over the boundary, that is, we imposeZ

@


g(xjy; �) d`(x) = 0: (10)

where d`(x) is the element of length measure along @
. It is straightforward to show that the Green's functions we
have de�ned are symmetric, ie, g(yjx; �) = g(xjy; �), although this depends delicately on the boundary conditions,
Equation (9), and on the choice of reference potential made in Equation (10).

Since the potential �elds, �(xjn; �), n = 1; 2 : : :N , satisfy Equations (6) and (7), they are given in terms of the
Green's functions by

�(xjn; �) =

Z



g(xjy; �)J
;n(y) d�(y) +
Z
@


g(xjy; �)J@
;n(y) d`(y)� �0(xer
n
jn; �)

= I0g(xjxea
n
; �)� I0g(xjxec

n
; �)� �0(xer

n
jn; �) (11)

using Equation (3), where d�(x) is the element of area measure in 
, and

�0(xer
n
jn; �) � I0g(xer

n
jxea

n
; �)� I0g(xer

n
jxec

n
; �):

We subtract �0(xer
n
jn; �) so that the potential at the reference electrode located at xer

n
is zero. It follows that, in order

to compute the N = K(K � 1)=2 �elds �(xjn; �), we must compute K Green's functions, g(xjxk; �); k = 1; 2 : : :K,
one for each point, xk, at which we attach an anode or cathode. The potential �elds are given as linear combinations
of this set of \fundamental solutions" by Equation (11). Since the �elds we measure depend on just K Green's
functions, no potential measurement can be made at the source electrode, and the Greens functions are symmetric,
K(K � 1)=2 is the number of genuinely independent measurements that can be made on K electrodes.

In the examples which follow, we solve for the Green's functions in a square region. We discretise the region in an
M -element regular square array (mesh) of pixels labelledm = 1; 2 : : :M assigning the pixel conductivity �m according
to conductivity at the center of the pixel. Thus the conductivity �(x), the �elds �(xjn; �), and the Green's functions
g(xjy; �) have corresponding discrete representations �m, �m(n; �) and gm

0

m (�) satisfying di�erence equations and
summation conditions derived in the simplest possible way from Equations (8), (9) and Equation (10). Note that
we represent the conductivity in 
 on the same square mesh we use to solve for �(�), using the same symbol � for
the vector of lattice values �m, m 2 1; 2 : : :M and the distribution function �(x), x 2 
. For the results presented a
simple �nite di�erence scheme was implemented in C and called to solve for the Green's functions.



5. MODELLING THE CONDUCTIVITY

We wish to specify a prior distribution for the probability that some trial conductivity � coincides with the unknown
true conductivity s in 
. We must specify model variables, their state space, and probability distribution or density.
These prior models may also be regarded as representing varying states of prior knowledge. In this paper we present
results for Models A and B. See the conclusions for further remarks concerning Model C.

Model A There are C possible types of material in the region. The conductivities of the materials are known exactly,
and correspond to the values C = fC1; C2 : : : CCg. In this case �m 2 C. We model � on the lattice as an Ising
or Potts binary or higher order Markov random �eld, with distribution

Prfs = �g / exp

 
�

MX
m=1

Hm(�)

!
where Hm(�) �

X
m0�m

��m;�m0 :

The sum overm0 � m is a sum over the four immediate neighbours m0 of m on the square lattice. The function
�a;b is the indicator function for the event a = b. Let �A
 = CM denote the set of all possible pixel-based
conductivity distributions � in model A so that in model A, � 2 �A
 .

Model B The types of possible materials (labelled 1; 2 : : :C) making up the object are known. However, the con-
ductivities of these materials vary from pixel to pixel within 
. Let �(x); x 2 
 be some estimate of the
material type �eld. Corresponding lattice variables �m, m = 1; 2 : : : ;M with state space �m 2 f1; 2 : : :Cg give
the estimated material type at pixel m. Let t(x); x 2 
 denote the unknown true material type �eld in 
.
Let �B
 = f<+gM and TB
 = f1; 2 : : :CgM denote the state space of � and � in model B, so that in model
B, � 2 �B
 and � 2 TB
 . Let d� = d�1d�2 : : : d�M . Conditional on the material type � , we suppose that the
prior distribution of � is multivariate normal, subject to the condition �m > 0;m = 1; 2 : : : ;M , with mean
�(�) and variance �(�) depending on the material type, and correlation parameter ~�. Let N0(r;�; �) denote
the normal density, mean �, variance �, but normalised over r > 0 only. Conditional on material type the prior
distribution is then

Prfs 2 d�j�g / exp

 
�~�

MX
m=1

Gm(�)

!
�

MY
m0=1

N0(�m0 ;�(�m0); �(�m0)) d� where Gm(�) �
X

m00�m

(�m��m00)2

In this model the C parameters �(c); c 2 f1; 2 : : :Cg replace the C parameters fC1; C2 : : : CCg of model A. The
�eld � representing the spatial distribution of material type has a Potts or Ising prior Prft = �g, identical to
Prfs = �g in model A. The overall prior is Prft = �; s 2 d�g = Prft = �gPrfs 2 d�j�g.

Model C We may, in addition, have knowledge about the structure, shape, and arrangement of objects in the region.
For example it may be known to contain man-made objects, with outlines that are composed of simple polygonal
structures. An intermediate level prior, modelling the underlying continuum process10,11 is appropriate.

6. MARKOV CHAIN MONTE CARLO

We wish to sample the posterior distributions obtained under models A and B. Model A may be regarded as a
special case of B in which ~� = 0 and �(�i) is very small compared to j�(�i)� �(�i�1)j and j�(�i+1)� �(�i)j for each
i = 1; 2 : : :C. We de�ne a Markov chain fXng1n=0 of random variables Xn taking values in �B
 � TB
 , and having an

n-step distribution with the property lim
n!1PrfXn 2 (�; d�)jX0 = (� (0); �(0))g = Prft = �; s 2 d�jvg. Such a process

will generate the samples we require. We use Metropolis-Hastings updates. In order to get ergodic behaviour on
useful time scales we found it necessary to include several di�erent types of update or move-types in the MCMC. A
move is a stochastic operation used to determine a value for Xn+1 given a value for Xn.

The simplest way to build multiple moves into a Metropolis-Hastings sampler is to de�ne a separate reversible tran-
sition probability for each move type.12 Let P be the number of moves, and let fPr(p)fXn+1 2 (�n+1; d�n+1)jXn =
(�n; �n)ggPp=1 be a set of P transition probabilities, reversible with respect to the posterior distribution Prf�; d�jv; Jg.
Let �p; p = 1; 2 : : : P be the probability to choose move p. Necessarily,

P
�p = 1. We select move p with probability

�p and use it to generate a MCMC update. The overall transition probability is

PrfXn+1 2 (�n+1; d�n+1)jXn = (�n; �n)g =
PX
p=1

�p Pr
(p)fXn+1 2 (�n+1; d�n+1)jXn = (�n; �n)g:



If at least one of the moves is Prf�; d�jv; Jg-irreducible on �B
 � TB
 , then the equilibrium distribution of the chain
is Prf�; d�jv; Jg,13 independent of X0, the MCMC initialisation. We list the moves used in an Appendix A.

Assertion For each p = 1; 2 : : :7 let

Pr(p)fXn+1 2 (�n+1; d�n+1)jXn=(�n; �n)g � qp( (�; �)! (� 0; d�0) ) � �p( (�; �)! (� 0; �0) )

for qp((�; �)! (� 0; d�0)) and �p((�; �)! (� 0; �0)) the proposal and acceptance distributions de�ned in Appendix A.

For each p = 1; 2 : : : 7, the transition kernel Pr(p)fXn+1 2 (�n+1; d�n+1)jXn = (�n; �n)g is reversible with respect to
Prf�; d�jv; Jg. Also, the transition kernel for move 1 de�nes a process Prf�; d�jv; Jg-irreducible on �B
 � TB
 .

7. MARKOV CHAIN MONTE CARLO WITH AN EIT LIKELIHOOD

In this section we refer to a \current" process state, Xn = (�; �), and a \candidate" state, labelled (� 0; �0), proposed
in the course of a Metropolis-Hastings update. In order to compute the acceptance probabilities, �p, at an update,
we need L(�0)=L(�). As we saw in Section 4, this involves solving Equations (8) and (9) for the Green's functions
g(xjxk ; �0) in the candidate conductivity �0, and computing �(xjn; �0) and L(�0) using Equations (11) and (5). We
have described how we solve for the Green's functions. This operation takes too much time to be feasible at each
step of the Markov chain. Notice, however, that for moves 1-4, at least, the two conductivities � and �0 di�er only
slightly, and that we have already calculated the Green's functions g(xjxk ; �) in the current conductivity �. In a
previous paper2 we have shown how the Green's functions for � may be used to estimate the Green's functions in
�0, and therefore the log-likelihood L(�0). Our estimate is good when �0 and � di�er only slightly.

The MCMC algorithm is as follows. Given a state Xn = (�; �), given the Green's functions g(xjxk ; �), for x 2 

and xk 2 E
, k = 1; 2 : : :K, and given L(�), the log-likelihood of the state, Xn+1 is determined in the following way.

Step I Select a move p with probability �p. Generate (�
0; �0) by sampling qp((�; �) ! (� 0; d�0)).

Step II Using the local linearization,2 estimate L(�0).

Step III Compute the acceptance probability for the state, �p((�; �) ! (� 0; �0)).

Step IV Accept or reject the candidate state (� 0; �0):

IV.i If (� 0; �0) is rejected, set Xt+1 = �. There is no change to the state so the Green's functions and
log-likelihood are unchanged, available for the next iteration.

IV.ii If (� 0; �0) is accepted, set Xt+1 = �0. We must now solve Equations (8) and (9) K times in order to
compute g(xjxk ; �0), for k = 1; 2 : : :K, and update the log-likelihood to L(�0).

To summarise, given the Green's functions for current sources in a conductivity �, we may estimate the likelihood
of a candidate conductivity �0 generated in the Metropolis-Hastings procedure, without solving the PDE again.
Metropolis-Hastings updates which lead to rejection are local operations, involving the conductivity values at just a
few pixels neighbouring the point at which a change is made. However, if �0 is accepted, we must solve the PDE, as
we now wish to perturb about the �elds of the conductivity �0.

We conclude with a comment on computing the Metropolised Langevin update. Referring to Equation (13),
the key computation is of @�(xk jn; �)=@�m. We must compute the change in the �eld at electrodes caused by a
small change in the conductivity within the region. This is e�ected without solving the PDE, in a computation of
order constant in time for each �m, using the same linearisation as before2 to compute the response of the Green's
functions to a small change in � at each pixel m = 1; 2 : : :M in turn. In a process in which the computation of
likelihood ratios is expensive, \large" updates, involving changes to a large number of pixels, become attractive.
Usually such moves are not feasible, as randomly generated candidate states tend to have low probability, and
are therefore rejected. However Langevin updates generate candidate states which step in the direction of locally
decreasing posterior potential, leading to acceptable acceptance rates if the jump size h is chosen appropriately.14

In the process we de�ne, the Langevin update has a very low acceptance rate for reasonable h values, probably on
account of the extreme sensitivity of the likelihood to variations in the conductivity near the boundary. It may be
appropriate to normalise the Langevin update vector r log(f(�; �jv)), or work with a spatially varying parameter h.
Either revision is straightforward in a Metropolis adjusted di�usion. Other schemes exist for selecting large updates
which have good acceptance rates, notably micro-canonical updates.15



8. EXPERIMENTS

The algorithm described in Section 7 was implemented in C. The MCMC software was tested in the usual way.2

In each of the following examples we start with a known, or \true", conductivity distribution, s(x). This is imaged
with 16 electrodes located as shown in Figure 1(b). The conductivity model and the �nite di�erence PDE solver
use the same 25� 25 conductivity lattice. We condition on the value of the conductivity around the electrodes, so
Xn(x) = s(x) for all n = 0; 1; 2 : : : and all x inside a strip of width 2 pixels neighbouring the border. Details of all the
experiments we present are shown in Table 1. Arti�cial data v is generated by adding Gaussian noise to the potential
observed at each electrode, as in Equation (4). We choose to test observations with standard deviation d = 0:005, a
signal to noise ratio of around 1500 : 1, taking account of the (K � 3)-fold over-measurement. Measurements of this
quality are physically achievable.

We sample the posterior with Markov Chain Monte Carlo, initialising the chain in all cases with a random pattern
of conductivity (and material types, Model B and Figure 4). We compute the mean and variance of the sampled
conductivity at each pixel. These statistics are displayed as images, along with a sample from the posterior, in
the �gures which follow. The sample we present is simply the state of the MCMC process at the end of a long
sequence of updates of �xed length. A number of statistics are recorded along the run, including the log-likelihood
L(�), the posterior potential, and the proportion of pixels of each conductivity value (Model A) or type (Model B).
Convergence is rather slow, though it seems to be reliable, as can be judged from the output statistics plotted in
Figure 2. The integrated autocorrelation time (IACT) of the log-likelihood (�LL say) was computed. This quantity
is small in e�cient MCMC. Roughly speaking, �LL is the number of correlated MCMC samples from the posterior
with the variance-reducing power of one independent sample. We �nd that the IACT does indeed drop when moves
5 and 6 are included alongside moves 1-4.

In the experiment from the synthetic data of Figure 3(a), three conductivity values (C1 = 1, C2 = 2 and C2 = 3)
appear. Referring to the variance image, Figure 3(d), the reconstruction of the square region with conductivity value
2 units is somewhat uncertain. The data may now be �tted by replacing part of this region by a small region in which
the conductivity value is 2 units, and shrinking it somewhat. In an earlier experiment (presented elsewhere2), treating
synthetic binary conductivity patterns, observed under the same conditions as here, and reconstructed using the prior
knowledge of Model A, we found we were able to recover �(x) essentially perfectly, and with negligible variation in
the posterior conductivities at pixels. The uncertainty in the recovered conductivity distribution increases as the
number of allowed conductivity levels increases, as Figure 3 shows. However, the mean conductivity remains a good
estimator for the true conductivity s(x).

When we move to the more realistic state of prior knowledge represented by Model B, the ambiguity in the
reconstruction increases again. The simulation summarised in Figure 4 illustrates this observation. The prior

Table 1. Run parameters for �gures. Blank entries are not applicable or not of interest. The second row corresponds
to a run sampling the same posterior distribution as in the �rst row, but with varied move proportions.

Figure Model move fractions % �; ~� �(1); �(2); �(3) �(1); �(2); �(3)
�1 : �2 : �3 : �4 : �5 : �6 or C1; C2; C3

3 A 1:9:50:40:0:0 0.75,- 1.0, 2.0, 3.0 - - -
(no image) A 1:9:40:40:5:5 0.75,- 1.0, 2.0, 3.0 - - -
4 B 1:9:40:40:0:0 0.0,0.5 1.0, 2.0, 3.0 0.2 0.2 0.2
5 A 1:9:40:40:5:5 0.75,- 1.0, 2.0, 3.0 - - -

Table 2. Output statistics for Figures. Missing entries are not applicable or not of interest. Bracketed quantities
indicate standard errors. The �rst two rows repeat the same simulation with varied move proportions. This is done
to test the algorithm implementation. Estimated means, EfL(�)g, should agree. 1 sweep is 441 updates, the number
of pixels in the lattice which are subject to updates. �LL is the IACT of the log-likelihood, see text. Timing is given
for a simple serial C-implementation of the sampling algorithm on a machine with SPECfp95 equal 12.4

Figure �LL sweeps �LL minutes EfL(�)g
3 (a-d) 100(10) sweeps 4 -810.9 (0.1)
3 (no image) 45(10) sweeps 10 -811.0 (0.2)
4 (g,h,i,j) 170(40) sweeps 5.5 -
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Figure 2. The sample log-likelihood (up to a constant independent of �) plotted against the update number, along
with the autocorrelation function (ACF) of the MCMC output series. (A) Model A, series used to estimate results
in Figure 3. (B) ACF of series in (A). Dashed lines indicate variance of ACF asymptotic in the lag. (C) Model B,
for Figure 4g-j. (D) ACF of series in (C). Otherwise as for (B). The quality of convergence in Figure 4g-j is poor as
can be seen from (D).

DA B C

Figure 3. Recovering conductivity information for a synthetic data set with three conductivity levels, computed
from (a), electrode positions as in Figure 1a. Conductivities C1; C2 and C3 are black grey and white respectively.
The state in (b) is a sample from the posterior, the mean conductivity is shown in (c), and pixel conductivity variance
is shown in (d), where darker shades indicate greater variance.

A B C D E

Figure 4. Recovering conductivity information for a synthetic data set, computed from (a) with continuous, varying,
conductivity pixel variables. Lighter shades indicate higher conductivity. Material type as for Figure 3(a). The state
in (b) gives sampled reconstructed material type classi�cations while (c) gives sampled reconstructed conductivity
values. Mean conductivity values are shown in (d), and pixel conductivity variance is shown in (e).
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Figure 5. Indications of shielding leading to increased uncertainty in sampled reconstructed conductivity. Recov-
ering conductivity information for a synthetic data set with three conductivity levels. (a) gives true conductivity for
(b)-(d), (e) gives true conductivity for (f)-(h). (a,e) true conductivity, (b,f) sample reconstructed conductivity from
posterior, (c,g) mean conductivity and (d,h) pixel conductivity variance.

knowledge of material type correlation between adjacent pixels becomes important in lowering the probability of
reconstructions in which the border of blocks of uniform material type loose de�nition. We �nd we are able to
sample the posterior adequately using moves 1-4. However, the state-adaptivity of moves 1-4 is important. Simpler
move sets not focusing on the discontinuity set of the type �eld � prove to be inadequate.16

Finally, certain patterns of conductivity can screen internal structure. The true conductivity distributions shown
in Figures 5(a) and (e) are similar, except that in (a) the conductivity levels on an inward bound path go medium-
low-high (ie, 2:0� 1:0� 3:0) whilst in (e) the sequence is low-medium-high (ie, 1:0� 2:0� 3:0). The lack of contrast
in the interior makes the conductivity distribution of Figure 5(e) relatively di�cult to reconstruct. The posterior
variance is large in the interior, and the structure there is determined largely by the prior.

9. CONCLUSIONS

We �nd that a Bayesian approach to inverting EIT data, with analysis based on posterior samples obtained via
MCMC simulation, is feasible, for simple synthetic problems. This is a promising result. It suggests that it will be
possible to explore real EIT data using well developed statistical methods and visualisation devices. A relatively
sophisticated adaptive sampling algorithm is required. This algorithm is modular, ie built of separate move types.
Its main elements will be useful in MCMC outside Bayesian EIT. The high computational cost of an acceptance in
our MCMC algorithm is balanced against the more common but faster rejections. The PDE need only be solved in
the event that an update is accepted. Thus we found moves 1-4 adequate for sampling despite an overall acceptance
rate around 2%. Moves 5 and 6, which use sub-chains of MCMC updates, are expensive to compute. They solve
initial convergence problems in certain di�cult (low-noise) examples we have explored.

We expect that higher level models, of the kind described in Section 5, Model C, and explicitly elsewhere in
this conference, will resolve these problems in a more general way, for at least some electrode arrangements and
conductivity distributions. Higher level models remove or change the character of the ambiguity in the reconstruction.
This ambiguity corresponds to multi-modality in the posterior, which is the immediate di�culty. Ambiguities caused
by screening also may be ameliorated if extra high level information is available. Our own initial experiments in
this line with relatively complex intermediate level (continuum mosaic11,17) models have themselves shown poor
convergence. We expect that simpler continuum models18 will be more e�ective.

APPENDIX A. MARKOV CHAIN MONTE CARLO UPDATES

In this Appendix we detail the moves used to de�ne the MCMC. Each move de�nes a transition kernel reversible
with respect to the posterior distribution. The state is composed of regions of uniform conductivity. Referring to



Figure 3(d), we see that much of the uncertainty in the reconstructed state occurs at change points in the conductivity.
We therefore construct moves which focus updates on pixels in regions where the conductivity is non-uniform.19 The
expressions for the acceptance probabilities �p, p = 1; 2 : : :7 given for the following moves are calculated using the
usual Metropolis-Hastings formula.20

A pixel n is a near-neighbour of pixel m if their lattice distance is less than
p
8. A pixel has twenty four near-

neighbours, unless it is on or near the boundary. An update-edge is a pair of near-neighbouring pixels on the lattice.
Let N �(�) be the set of update-edges connecting two pixels of unequal conductivity in �. Let N �

m(�) be the set of
edges in N �(�) involving the pixel m. We maintain a list of the update-edges in N �(�), for the current state � of
the Markov chain. We use this to select at random pairs of pixels with unequal conductivities. Let jN �(�)j be the
number of elements in set N �(�). Let S4 � �1 + �2 + �3 + �4.

Move 1 Flip a pixel. Select a pixel m uniformly at random from 1; 2 : : :M and assign � 0m a conductivity type chosen
uniformly at random from the C � 1 conductivity types not equal to the original type �m. Next, a conductivity
value �0m � N0(�

0
m;�(�

0
m); �(�

0
m)) is selected. Let (�

0; �0) be the candidate state thus generated. � 0 di�ers from
� at just one pixel; �0 and � likewise. The probability to generate the move is

q1((�; �) ! (� 0; d�0)) = 1=M(C � 1)�N0(�
0

m;�(�
0

m); �(�
0

m))d�
0

The acceptance probability is

�1(� ! �0) = min
n
1; e2�(Hm(�0)�Hm(�)) � e�2

~�(Gm(�0)�Gm(�)) � eL(�
0)�L(�)

o
:

Move 2 Flip a pixel near a conductivity boundary. Pick an update-edge at random from N �(�). Pick one of the
two pixels in that edge at random, pixel m say. Pixel m can be selected in jN �

m(�)j possible ways. Proceed as
in Move 1, generating a candidate state (� 0; �0). The overall probability to generate the move is

q2((�; �) ! (� 0; d�0)) =
jN �

m(�)j
2jN �(�)j(C � 1)

�N0(�
0

m;�(�
0

m); �(�
0

m))d�
0:

The acceptance probability is

�2((�; �)! (� 0; �0)) = min

�
1; e2�(Hm(�0)�Hm(�)) � e�2

~�(Gm(�0)�Gm(�)) � eL(�
0)�L(�) � jN �

m(�
0)jjN �(�)j

jN �
m(�)jjN �(�0)j

�
:

Move 3 Swap conductivities at a pair of pixels. Pick an update-edge at random from N �(�). Suppose it connects
pixels m and n with conductivity types �m = a and �n = b. The candidate state � 0 is equal to � except that
� 0m = b and � 0n = a. The conductivities �m and �n are likewise swapped to generate candidate state �0. The
generation probability is

q3((�; �) ! (� 0; �0)) = 1=jN �(�)j:
The acceptance probability is

�3((�; �)! (� 0; �0)) = min

(
1;
e2�(Hm(� 0)+Hn(�

0))

e2�(Hm(�)+Hn(�))
� e�2

~�(Gm(�0)+Gn(�
0))

e�2~�(Gm(�)+Gn(�))
� eL(�

0)�L(�) � jN �(�)j
jN �(�0)j

)
:

The formula for �3 remains correct as it stands when m and n are neighbours.

Move 4 Assign new conductivities to each of a pair of pixels. Pick an update-edge at random from N �(�). Suppose
it connects pixels m and n with conductivity types �m = a and �n = b. Assign new random conductivity types
� 0m = a0 and � 0n = b0 chosen uniformly at random from f1; 2 : : :Cg2, subject to the conditions a0 6= a, b0 6= b
(avoid duplicating move 2) and a0 6= b0 (for reversibility), at each pixel. Assign new conductivities distributed
like �0m � N(�(� 0m); �(�

0
m)) and �0n � N(�(� 0n); �(�

0
n)). The probability to generate the move is

q4((�; �)! (� 0; d�0)) =
1

jN �(�)j(C2 � 3C + 2)
�N0(�

0

m;�(�
0

m); �(�
0

m))�N0(�
0

n;�(�
0

n); �(�
0

n))d�
0

md�
0

n:

If pixelm and n are not neighbours then �4((�; �)! (� 0; �0)) = �3((�; �)! (� 0; �0)). Ifm and n are neighbours,

�4((�; �) ! (� 0; �0)) = min

(
1;
e2�(Hm(� 0)+Hn(�

0))

e2�(Hm(�)+Hn(�))
� e�2

~�(Gm(�0)�(�0
m
��0

n
)2+Gn(�

0))

e�2~�(Gm(�)+(�m��n)2�Gn(�))
� eL(�

0)�L(�) � jN �(�)j
jN �(�0)j

)
:



Move 5 Multiple prior updates, likelihood acceptance16. Let Pr(p;PRIOR)fXn+1 2 (� 0; d�0)jXn = (�; �)g denote
the transition probability obtained for each move p = 1 to 4 by omitting the likelihood ratio eL(�

0)�L(�) in
�p. Simulate a subchain Y0; Y1 : : : YA of length A + 1 starting with Y0 = (�; �) and stepping with transition
probability

QPRIORfYa+1 2 (� 0; d�0)jYa = (�; �)g �
4X

p=1

�p
S4

Pr(p;PRIOR)fYa+1 2 (� 0; d�0)jYa = (�; �)g:

Now QPRIOR is reversible with respect to the prior, Prf�; d�g, and so the A-step transition probability in the
chain Y0; Y1 : : : YA satis�es

QPRIORfYA 2 (� 0; d�0)jY0 = (�; �)gPrf�; d�g = QPRIORfYA 2 (�; d�)jY0 = (� 0; �0)gPrf� 0; d�0g:
Let YA = (� 0; �0), so that the subchain generates our candidate state (� 0; �0). The candidate state is accepted
with probability

�5((�; �)! (� 0; �0)) = min
n
1; eL(�

0)�L(�)
o
:

Move 6 Multiple likelihood updates, prior acceptance. For each move p = 1 to 4 let

Pr(p;L)fXn+1 2 (� 0; d�0)jXn = (�; �)g = qp((�; �)! (� 0; d�0)) � min

�
1; eL(�

0)�L(�) � qp((�
0; �0)! (�; d�))

qp((�; �)! (� 0; d�0))

�

denote the transition probability obtained by omitting in �p factors associated with the prior. Simulate a
subchain Y0; Y1 : : : YA of length A+ 1 starting with Y0 = (�; �) and stepping with transition probability

QLfYa+1 2 (� 0; d�0)jYa = (�; �)g �
4X

p=1

�p
S4

Pr(p;L)fYa+1 2 (� 0; d�0)jYa = (�; �)g:

Now the A-step transition probability in the chain Y0; Y1 : : : YA satis�es

QLfYA 2 (� 0; d�0)jY0 = (�; �)g � eL(�) = QLfYA 2 (�; d�)jY0 = (� 0; �0)g � eL(�
0):

Let YA = (� 0; �0), so that the subchain generates our candidate state (� 0; �0). The acceptance probability is

�5((�; �)! (� 0; �0)) = min

�
1;
Prf� 0; d�0g
Prf�; d�g

�
;

where Prf�; d�g is the full prior.
Move 7 Metropolised Langevin updates. This update modi�es the conductivities only, leaving the conductivity types

unchanged. Let r� be the gradient operator in �, let h be a small constant (chosen small enough to give an
acceptance rate around 0:614) and let r be a realisation of anM -component random vector with iid components
distributed like N(0; h2). Let f(�; �jv) denote the posterior density, ie Prf�; d�jv; Jg = f(�; �jv; J)d� and set

�0 = � + h � r + h2

2
r� log(f(�; �jv; J)): (12)

In model B, for m = 1; 2 : : :M a pixel index,

@

@�m
log(f(�; �jv)) =

NX
n=1

KX
k=1

k 62en

@�(xk jn; �)
@�m

(vn(k)� �(xk jn; �))=2d2 � 4~�
X
i�m

(�m � �i)� (�m � �(�m))=�(�m):

(13)
This choice emerges as the natural discretisation of the Langevin di�usion21 reversible with respect to Prf�; d�jv; Jg.
We now regard �0 de�ned by Equation (12) as the candidate state in a Metropolis-Hastings update.14 The
generation probability is simply

q7((�; �)! (�; d�0)) =
1p
2�h2

e�
P

M

m=1
(�0
m
��m)2=2h2 d�0:



Now, let

�00 = �0 +
h2

2
r� log(f(�; �

0jv; J))
The acceptance probability is

�3((�; �)! (�; �0)) = min

(
1;
Prf�; d�0g
Prf�; d�g � exp(�

MX
m=1

(�00m � �m)
2=2h+

MX
m=1

(�0m � �m)
2=2h)

)
:

Notice that Move 2 duplicates Move 1, but allows us to focus updates on the interface between regions of di�ering
conductivity.19 Move 1 is still needed, for irreducibility. Note also that there is no useful simpli�cation of the
likelihood ratio exp(L(�0) � L(�)). This is because the log-likelihood is not an additive function of �, but depends
on the conductivity at each pixel through the non-linear �eld functions �(�).

REFERENCES

1. P. Metherall, D. C. Barber, R. H. Smallwood, and B. H. Brown, \Three-dimensional electrical impedance
tomography," Nature 380, pp. 509{512, 1996.

2. C. Fox and G. K. Nicholls, \Sampling conductivity images via MCMC," in The Art and Science of Bayesian

Image Analysis, K. Mardia, R. Ackroyd, and C. Gill, eds., Leeds Annual Statistics Research Workshop, pp. 91{
100, University of Leeds, 1997.

3. J. Sylvester and G. Uhlman, \A global uniquness theorem for an inverse boundary value problem," Ann. Math.

125, pp. 643{667, 1987.
4. C. Fox, Conductance Imaging. PhD thesis, University of Cambridge, 1989.
5. D. C. Barber, \A review of image reconstruction techniques for electrical impedance tomography," Med. Phys

16(2), pp. 162{169, 1989.
6. A. P. Calderon, \On an inverse boundary value problem," in Seminar on Numerical Analysis and its Applications,

W. H. Meyet and M. A. Ranpp, eds., Brazilian Math. Soc., (Rio de Janerio, Brazil), 1980.
7. T. J. Yorkey, Comparing reconstruction methods for electrical impedance tomography. PhD thesis, University of

Wisconson, Madison, WI, 1986.
8. P. Hua, E. J. Woo, J. G. Webster, and W. J. Tompkins, \Iterative reconstruction methods using regularization

and optimal current patterns in electrical impedance tomography," IEEE Transactions on Medical Imaging 10,
pp. 621{628, 1991.

9. T. Martin and J. Idier, \A Bayesian non-linear approach for electrical impedance tomography," tech. rep., CNRS,
martin@lss.supelec.fr, Lab. des Signaux at Systems, CNRS, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex,
France, 1997.

10. U. Grenander and M. Miller, \Representation of knowledge in complex systems (with discussion)," Journal of

the Royal Statistical Society B 56, pp. 549{604, 1993.
11. G. K. Nicholls, \Bayesian image analysis with Markov chain Monte Carlo and colored continuum triangulation

mosaics," Journal of the Royal Statistical Society B 60, pp. 643{659, 1998.
12. P. Green, \Reversible jump MCMC and Bayesian model determination," Biometrika 82, pp. 711{732, 1995.
13. L. Tierney, \Markov chains for exploring posterior distributions," Annals of Statistics 22, pp. 1701{1762, 1994.
14. G. O. Roberts and J. S. Rosenthal, \Optimal scaling of discrete approximations to langevin di�usions," Journal

of the Royal Statistical Society B , p. to appear, 1998.
15. M. Creutz, \Microcanonical monte carlo simulation," Phys. Rev. Lett. 50, pp. 1411{1414, 1983.
16. E. Clark, \Bayesian impedance imaging." Seminar, Physics Department, Auckland University, November 1997.
17. G. K. Nicholls, \Modelling planar change-point problems using colored continuum triangulation models," in The

art and science of Bayesian Image analysis, K. Mardia, R. Ackroyd, and C. Gill, eds., Leeds Annual Statistics
Research Workshop, pp. 143{150, 1997.

18. R. M. West, \Image reconstruction for electrical resistance tomography by updating local parameters," tech.
rep., Camborne School of Mines, University of Exeter, UK, 1998.

19. B. D. Ripley, Stochastic Simulation, Cambridge University Press, Cambridge, 1987.
20. W. K. Hastings, \Monte Carlo sampling methods using Markov chains and their applications," Biometrika 57,

pp. 97{109, 1970.
21. P. J. Rossky, J. D. Doll, and H. L. Friedman, \Brownian dynamics as smart monte-carlo simulation," J. Chem.

Phys 69, pp. 4628{4633, 1978.


