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Abstract

Non-invasive imaging based on wave scattering remains a difficult problem in
those cases where the forward map can only be adequately simulated by solving
the appropriate partial-differential equation (PDE) subject to boundary condi-
tions. We develop a method for solving these linear boundary-value problems
(BVP) which is efficient and exact, trading off storage requirements against
computation time. The method is based on using the present solution within
the Woodbury formula for updating solutions given changes in the trial image,
or state. Hence the method merges well with the Metropolis-Hastings algorithm
using localized updates. The scaling of the method as a function of image size
and measurement set size is given. We conclude that this method is consider-
ably more efficient than earlier algorithms that we have used to demonstrate
sampling for inverse problems in this class. We give examples of sampling for
imaging electrical conductivity from a simple synthetic data set. Full Bayesian
inference is demonstrated with expectations calculated over the posterior for
Potts type prior distributions.
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I. Introduction

A. Imaging from Wave Scattering

Non-invasive imaging for medical diagnostics and geophysics often uses scat-
tering of waves to probe the object under investigation. These techniques are
non-invasive when the wave scattering is measured remotely from the object,
and the object is irradiated with waves using a source remote to the object. A
common example is simple x-ray imaging where a person is irradiated from one
side using a point x-ray source and the partially-transmitted waves are mea-
sured using a photographic plate on the opposite side to the source. In this
paper we are particularly interested in cases where the scattering within the
object is strong, i.e., where the path that the waves take is signiÞcantly af-
fected by propagation through the object. The example of x-ray imaging is not
such a case since the rays propagate through tissue in essentially straight-line
paths, largely independent of the particular tissue being imaged. This feature
of x-ray imaging is related to the high energy, ionizing, nature of x-rays which
as a side-effect causes damage to the tissue through which it propagates � or
more correctly by which it is absorbed. Lower-energy, non-ionizing, radiation
is therefore a potentially safer source of waves for the purpose of imaging for
medical diagnostics. However, the scattering process for such waves is strong
and the path that each ray takes is implicitly determined by the propagation
medium.
This makes the imaging problem far more difficult as the path of propagation

as well as the medium must be reconstructed in the imaging step. The implicit
dependence of the wave path makes the imaging problem non-linear in contrast
to imaging from weak scattering where the forward map is linear.1

Three examples of imaging from wave scattering, corresponding to three
different types of energy being propagated, are given in the following table.

quantity being imaged governing PDE PDE classiÞcation
electrical conductivity ∇ ·(σ∇φ) = s elliptic

acoustic impedance ∇ ·(σ∇p) = σ

c2
p̈ hyperbolic

thermal conductivity ∇ ·(σ∇u) = úu parabolic

In each case the quantity being imaged is denoted by σ and appears as the
spatially-varying coefficient in the PDE governing the propagation of energy, or
�waves�. The measurements are made of the boundary values of electrical poten-
tial φ,2,3 ultra-sound pressure p,4 and temperature u, respectively in the three
cases. In each case the measurement process is simulated by solving the PDE
subject to boundary conditions that correspond to the wave irradiation. The
simplest case is imaging electrical conductivity, though it shares with the others
the primary computational difficulty that the space part of the PDE is the el-
liptic, Laplacian-like, operator which has no characteristics and hence must be
solved using an �implicit� method. For the remainder of this paper we concen-
trate on imaging electrical conductivity and show how that implicit calculation
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may be solved efficiently within an inferential computation using Markov chain
Monte Carlo. Formally, the other imaging problems, such as imaging from ul-
trasound backscatter, can be shown to be equivalent to a sequence of problems
of this type.5

B. Conductivity Imaging

We now focus on the canonical problem for imaging from scattered electro-
magnetic waves where the radiation has a sufficiently low frequency that the
propagation is quasi-static. Then the measurables are the surface values of the
stationary current and the constant potential. In this long-skin-depth limit,
the quantity imaged is the spatially varying conductivity of the object, which
we denote σ (x). The waves now have (inÞnitely) long wavelength and the ray
picture of propagation is not valid. Indeed, the current does not follow any
single path but rather a distribution of paths.

1. Idealized Measurement Procedure

Instrumentation for conductivity imaging typically uses a number of elec-
trodes placed on the surface of the object with the ability to assert currents into
the electrodes and then measure the resulting voltages at the electrodes. We
will denote the electrode positions by x1, x2, · · · , xE , there being E electrodes.
For our purposes we consider point electrodes and assume that electrodes for
current and voltage are the same. In practical instrumentation, electrodes are
often Þnite sized and differ for current and voltages. These complications may
be taken into account and do not fundamentally affect our results here.
It is usual to describe the electrical Þeld within the object using the scalar

potential φ (x) from which the vector current is given by ρ (x) = −σ (x)∇φ (x).
The vector of currents j =

³R
x1
ρ · n, Rx2 ρ · n, · · · , RxE ρ · n´T is asserted at the

electrodes and the voltages v = (φ (x1) ,φ (x2) , · · · ,φ (xE))T are measured. HereR
xi
ρ · n denotes the integral of the component of the current density in the

direction of the unit normal to the boundary, n, over the ith electrode, and hence
is the total current passing through the ith electrode. If L different current
vectors are used, the total set of measurements is the collection of current-
voltage pairs

©
jl, vl

ªL
l=1

in which jl is the lth asserted vector of currents and
vl is the corresponding vector of measured voltages. For brevity, we use the
shorthand {j, v} for ©jl, vlªL

l=1
.

2. Forward Map

Let Ω denoting the region occupied by the object. The relationship be-
tween the unknown image σ (x) and the measurement procedure is given by the
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Neumann boundary value problem (BVP):

∇ · σ (x)∇φ (x) = s (x) x ∈ Ω
σ (x)

∂φ (x)

∂n (x)
= j (x) x ∈ ∂Ω (1)

along with the deÞnition of the potential reference. Here n denotes the unit
outward normal vector on the boundary of the region ∂Ω. The function s
gives the density of current sinks within the region as is zero for non-invasive
measurements. In typical applications σ can be bounded above and away from
zero, i.e., ∃σmin,σmax such that 0 < σmin ≤ σ ≤ σmax <∞, though in all cases
σ > 0.
The forward map, which goes from conductivity images to the measured

potentials on the boundary, requires solution of this BVP with s ≡ 0. Note that
the BVP is linear given σ, but the relation between σ and the measurements is
not linear. Later we will see that if σ is compiled into a certain matrix, then
the measurement procedure corresponds to measuring certain elements of the
inverse matrix.

3. Green�s Function

Solutions of the boundary-value problem 1 can be written in terms of the
Neumann Green�s function g (x|ξ) which, for each ξ ∈ Ω, is the solution of the
auxiliary problem

∇ · σ (x)∇g (x|ξ) = δ (x− ξ) ∀x ∈ Ω
σ (x)

∂g (x|ξ)
∂n (x)

= 1
|∂Ω| ∀x ∈ ∂ΩR

∂Ω
g (x|ξ) dl (x) = 0

. (2)

Hence, g (x|ξ) gives the potential at x due to a unit current sink at the point
ξ. Here |∂Ω| denotes the length of the boundary and dl is the length element
on the boundary. The Þrst boundary condition is the statement that the cur-
rent injected at ξ is removed uniformly around the boundary, while the second
boundary condition effectively states that potentials are measured with respect
to the mean potential on the boundary. The two boundary conditions are cho-
sen to ensure that the boundary value problem is self-adjoint6 and hence the
Green�s function is symmetric, i.e.,

g (x|ξ) = g (ξ|x) .
Pairs of boundary conditions can be found that correspond to any other reference
for the potential. For computational efficiency it is important that the choice
be made so that the Green�s function is symmetric.
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4. Inverse Problem

For non-invasive measurements s (x) ≡ 0, and solutions to 1 may then be
written in terms of the Neumann Green�s function as

φ (x) =

Z
∂Ω

g (x|ξ) j (ξ) dl (ξ) (3)

with φ being measured with respect to its mean value on the boundary. We
denote the resulting map from boundary current to potential by Γσ : j → φ.
It is clear from 3 that Γσ is a linear functional deÞned by its kernel g (x|ξ).

Since we are free to choose the currents j (ξ), complete measurements therefore
correspond to measuring g (x|ξ) for x, ξ ∈ ∂Ω. Practical measurements made at
electrodes are complete when the values g (x|ξ) for x, ξ ∈ {x1, x2, · · · , xE} are
effectively measured. These values of the Green�s function deÞne the mapping
between boundary currents and boundary voltages and, hence, also deÞne the
noise-free data. The imaging, or inverse, problem is to determine σ from these
measurements of the Green�s function. Since the Green�s function depends
implicitly on the unknown conductivity σ and, because that dependence is not
linear, the inverse problem is non-linear.

5. Bayesian Formulation

The physical quantities in the model for the forward map are the conductiv-
ity σ, the potential φ, and the current density ρ � all being functions through-
out the region. The measured data consists of the current-voltage vector pairs©
jl, vl

ªL
l=1
. Because the measured voltages and currents are subject to measure-

ment errors, we distinguish between the measured boundary values and the Þeld
quantities involved in the forward map. We use upper-case to denote random
variables and lower case to denote trial values or realizations.

random variable realization
current in Ω R ρ
potential in Ω Φ φ
voltage at electrodes V v
current at electrodes J j
conductivity Σ σ

We add a superscript l to denote values corresponding to the lth current vector.
The set of realizations of potentials for all L measurement pairs is denoted

{φ} as shorthand for
n
φl
oL
l=1
, i.e., that φ ranges over the vectors with index

l = 1, 2, · · ·L is taken implicitly. We use analogous shorthand for all other Þeld
quantities except the conductivity σ which does not vary with l.
Even though all quantities take continuum values, we use notation for dis-

crete variables to avoid technical obfuscation. Then the joint posterior distribu-
tion for the Þeld quantities given measurements may be expressed using Bayes�
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equality as

Pr
n
Σ = σ, {Φ} = {φ} , {R} = {ρ} | {J, V } = {j, v}

o
= Pr

n
{J, V } = {j, v} |Σ = σ, {Φ} = {φ} , {R} = {ρ}

o
×Pr

n
Σ = σ, {Φ} = {φ} , {R} = {ρ}

o
.

The three Þeld quantities parametrizing the Likelihood and prior can not be set
independently since, given the conductivity and potential, the current density
is determined by Ohm�s law that ρ = −σ∇φ. Further, the internal potential is
determined by the Neumann BVP 1 given the boundary conditions which are
the current density crossing the boundary and one value of the potential. We
have chosen the latter by setting the mean potential on the boundary to be zero
always. Hence, the Þeld parameters that we are free to set are the conductivity
σ and the current crossing the boundary (ρ · n) |∂Ω. Given these quantities, then
φ = Γσ ((ρ · n) |∂Ω) and ρ = −σ∇φ. We will write this parametrization as σ, ρ,
understanding that we are actually only free to specify the current crossing the
boundary and not all of ρ. The joint prior distribution for the Þeld quantities
is thus

Pr
n
Σ = σ, {Φ} = {φ} , {R} = {ρ}

o
= Pr

n
Σ = σ, {R} = {ρ}

o
.

Since we are only interested in reconstructions of the conductivity, we choose to
stipulate the functional form of the prior on the conductivity only, i.e., specify
Pr{Σ = σ} only, � usually a Markov random Þeld � with the prior having no
dependence on Rl since we do not seek to make images of the currents.
The Likelihood function for the Þeld quantities, once the measurements have

been made, can be simpliÞed using conditional independence between current
and voltage measurements to give

L (σ, {φ} , {ρ}) = Pr
n
{J, V } = {j, v} |Σ = σ, {Φ} = {φ} , {R} = {ρ}

o
= Pr

n
{V } = {v} | {Φ} = {Γσ (ρ)}

o
Pr
n
{J} = {j} | {R} = {ρ}

o
since jl is the measured values of ρl · n at the electrodes and vl is φl measured
at the electrodes. When the errors between measurement sets are independent,
we may further simplify the Likelihood as

L (σ, {φ} , {ρ}) = ΠLl=1Pr
n
V l = vl|Φl = Γσ

¡
ρl
¢o
Pr
n
J l = jl|Rl = ρl

o
.

The two densities on the right-hand side depend on the distribution of errors
in the instrumentation. For example, if the current measurement has normally-
distributed additive errors then

Pr
n
J = j|R = ρ

o
∼ N

ÃµZ
x1

ρ · n,
Z
x2

ρ · n, · · · ,
Z
xE

ρ · n
¶T

, s2ρ

!
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where N denotes a multi-variate normal distribution with the mean being the
vector of internal currents that ßows into each electrode and with some variance
(or covariance matrix) s2ρ. If the errors in measuring potential were also normally
distributed then

Pr
n
V = v|Φ = Γσ (ρ)

o
∼ N

³
(Γσ (ρ) (x1) ,Γσ (ρ) (x2) , · · · ,Γσ (ρ) (xk))T , s2φ

´
where now the mean is the vector of potentials at electrodes given by solving the
BVP with boundary current ρ ·n, and the covariance matrix is s2φ. In both these
distributions we have dropped the l superscript, assuming that the functional
form does not depend on l.
The majority of the computational work required for calculating the Likeli-

hood occurs in calculating the terms
©
Γσ
¡
ρl
¢ªL
l=1

since this requires L solutions
of the BVP 1.

6. Markov Chain Monte Carlo

Because the forward map depends non-linearly on σ, the posterior distri-
bution is skewed and modes of the posterior do not necessarily make optimal
reconstructions. For these high-dimensional problems there is no reason that
the mode be representative of the bulk of probability which is dominated by
metric factors rather than the value of the posterior. Instead, we seek to calcu-
late expectations over the posterior using Markov chain Monte Carlo (MCMC)
to draw samples from the posterior. We have previously demonstrated7,8 cal-
culation of mean images, along with sample variances, etc., from synthetic data
for this inverse problem via a MCMC algorithm with an approximate method
for solving the BVP.
In MCMC, the forward problem is repeatedly simulated and used to generate

a Markov chain {(Σ, {R})t}∞t=0 of random variables taking values from allow-
able conductivity distributions and boundary currents, with a t-step distribu-
tion Pr

¡
Σt = σ|Σ0 = σ(0)

¢
which tends to the marginal posterior distribution,

Pr {Σ = σ| {J, V } = {j, v}}, as t tends to inÞnity.
In our implementations we use Metropolis-Hastings dynamics deÞned by a

separate reversible transition probability for each of several move types. We
will only give a very brief outline of the method here; interested readers can
Þnd details in our earlier papers.7,8 The moves are chosen so that the process is
irreducible on allowable states and behaves ergodically within useful time scales,
but the moves are otherwise arbitrary. Evolution of the boundary current re-
quires straightforward sampling from a normal distribution. Efficient evolution
of the conductivity distribution is achieved by moves which pick a pixel at ran-
dom or which concentrate on pixels near an �update edge� which is an internal
boundary between different conductivity values. Brießy the moves are: ßip the
conductivity at a randomly chosen pixel, ßip the conductivity at a pixel near
an update edge, swap conductivities at a pair of nearby pixels across an update
edge, ßip conductivities at a pair of nearby pixels across an update edge. The
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Þrst move guarantees irreducibility of the chain, and is dominant during burn-
in, while the other moves are necessary for efficient mixing in equilibrium. A
key feature of all these moves is that changes to the conductivity are localized,
occurring at one or two nearby pixels.
The MCMC algorithm proceeds as follows: Given a state (Σ, {R})t = (σ, {ρ}),

and the likelihood of the state L(σ, {ρ}), the next state (Σ, {R})t+1 is generated
by:

Step I Select a move p with probability ζp. Generate a candidate new state
(σ0, {ρ0}) according to the selected move.

Step II Calculate the likelihood of the candidate state L((σ0, {ρ0})).
Step III Compute the acceptance probability for the transition, (σ, {ρ}) →

(σ0, {ρ0}).
Step IV Accept or reject the candidate state (σ0, {ρ0}):

IV.i If (σ0, {ρ0}) is rejected, set (Σ, {R})t+1 = (σ, {ρ}).
IV.ii If (σ0, {ρ0}) is accepted, set (Σ, {R})t+1 = (σ0, {ρ0}).

Steps I to IV are repeated to generate a chain of any desired length. Ex-
pectations over the posterior are then calculated using Monte Carlo integration,
the integral being estimated by a normalized sum of the desired quantity over
the Markov chain.

C. Algorithms

The most frequently required calculation within the MCMC, that depends
on the forward map, is the evaluation of the likelihood of the candidate state
in step II . We seek an efficient algorithm by ensuring that this calculation may
be performed as cheaply as possible. In a direct implementation of the forward
map, calculation of the likelihood requires solution of the BVP, once for each
measurement current vector. For an image withM pixels, each solution requires
O
¡
M2

¢
calculations. Evaluating the likelihood requires a solution for each

measurement vector, making O
¡
LM2

¢
calculations in all. Since typically many

thousands, or millions, of states are required for accurate sample expectations,
this direct implementation is prohibitively expensive. In contrast, the algorithm
that we propose uses stored information about the present state in a way that
allows calculation of the Likelihood inO

¡
LE2

¢
operations forE electrodes. This

is a huge improvement over direct implementation. When the candidate state is
rejected, no further calculations are required for this time step. However, if the
candidate state is accepted, we presently require further O

¡
M2

¢
calculations to

update the stored quantities. While this step is computationally expensive, it
is still cheaper than each Likelihood calculation in the direct implementation.
There are many possible samplers, each deÞned by the choice and probability

of the moves. We have found a combination of sampler and method for solving

8



the BVP that gives an efficient sampling algorithm. Our present scheme is
based on restricting the moves to local changes in the conductivity state, either
changing the conductivity at a single pixel or at pairs of nearby pixels across
an update edge. By writing solutions of the BVP as an integral transform with
kernel being the Neumann Green�s functions, we can identify a minimal set of
quantities that need to be stored so that the potential at the electrodes, and
hence the likelihood, may be calculated with relatively few operations. This
calculation corresponds to application of the Woodbury formula, which gives
the updated inverse of a matrix for a low-rank change, in a discrete formulation
of the forward problem. One suitable discrete formulation is a Þnite-element
discretization of the problem, which we outline in the next sections along with
the application of the Woodbury formula. The same calculation may be posed
in terms of the differential operators directly, though that route is technically
more demanding.
In our previous sampling algorithms for conductance imaging7,8 we used a

linearization of the forward map σ → {j, v} to allow a cheap approximation to
the likelihood for a candidate state. That approximation had the consequence
that, for our particular simulations, about 14% of acceptances were falsely made
and hence detailed balance could not have been achieved. However, this did not
seem to affect the reconstructions signiÞcantly. We now understand that actu-
ally the false rejections (candidate states that were rejected on the basis of the
approximate likelihood but would have been accepted on the basis of the exact
likelihood) have a greater effect on efficiency of the sampler. That case occurs
for moves such as pixel swapping that do not greatly change the likelihood. The
linearization for such moves has a good absolute error but poor relative error;
the latter being important when Likelihood changes are small. And since moves
that keep the Likelihood nearly unchanged are important for efficient mixing
in equilibrium, the linear approximation has the effect of reducing mixing and
hence efficiency. For moves involving changes in mean conductivity, i.e. ßip-
ping single or pairs of pixels, the linearization remains an efficient and accurate
method for �solving� the BVP, though we no longer use it.
Our main result here is to show that the linear approximation can be replaced

with an exact calculation requiring the same order of operations. The exact
calculation requires extra storage, with the consequence that more updating
of stored values is required on an acceptance. However, the same scheme that
allows us to perform cheap calculations of the likelihood also allows us to update
the stored values more cheaply than in previous algorithms.

II. Finite Element Formulation

A. Variational Form

In this section we give a discretization of the forward map based on a Þnite-
element method (FEM) in which pixels are taken as elements. The method
for efficient calculation of the likelihood does not depend on this particular
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discretization and we could equally have used a traditional triangle-based FEM
or Þnite-difference discretization. The same pixel discretization is used for both
the conductivity distribution as well as the Þeld quantities. This feature is not
necessary, nor desirable when higher-level prior models are used, but it allows
us to display the algorithm simply.
Finite element methods utilize the equivalence between the BVP 1 and the

variational statement that

φ (x) = argmin

Z
Ω

³
σ (x) |∇φ (x)|2 + 2s (x)φ (x)

´
dx−

Z
∂Ω

j (x)φ (x) dl (x)

(4)
subject to the constraint Z

∂Ω

φ (x) d l (x) = 0.

The Neumann boundary condition in the BVP 1, of given boundary current,
is included here as the �natural boundary condition� for this variational form.
However the second boundary condition, corresponding to our using the mean
over the boundary as the reference of potential, necessarily appears as a con-
straint.
The particular case of solving for a Green�s function, in BVP 2, gives the

reduced form

g (x|ξ) = argmin
Z
Ω

σ (x) |∇g (x|ξ)|2 dx+ 2g (ξ|ξ)

subject to Z
∂Ω

g (x|ξ) dl (x) = 0.

Note that all derivatives and integrals are with respect to the Þrst, x, variable.

B. Pixel FEM

We discretize Ω using a square mesh. The conductivity within each square,
or �pixel�, is taken to be constant and the nodal values of the potential, at
the vertices of each square, are used to deÞne the potential. Denote the region
occupied by the ith pixel by Ωi. Then Ω = ∪Mi=1Ωi when there areM pixels in all.
The integrals required in equation 4 can then be written as a sum of integrals
over each pixel. The integral over each pixel is conventionally performed by
transforming coordinates onto the master square Ωm = [0, 1]× [0, 1] in the (x, y)
plane that has constant conductivity σ = 1. Given the potential φ (x, y) at the
four corners φ (0, 0) = φ00, φ (1, 0) = φ10, φ (0, 1) = φ01, φ (1, 1) = φ11, we
take the potential within the pixel to be the bilinear interpolation9 of the �local�
nodal values

φ (x, y) = (1− y) ((1− x)φ00 + xφ01) + y ((1− x)φ10 + xφ11) .
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The energy integral over Ωm is thenZ 1

0

Z 1

0

³
σ |∇φ|2

´
dxdy = (φ00,φ01,φ10,φ11)

TKl (φ00,φ01,φ10,φ11)

where

Kl =
1

6


4 −1 −1 −2
−1 4 −2 −1
−1 −2 4 −1
−2 −1 −1 4


is the �local stiffness matrix�.
The nodal values of potential can be arranged as a vector which we denote

by φ, i.e., using the same symbol as the continuous counterpart. The position
of a node within this vector is called the global nodal number. For each ele-
ment Ωi we need to know the mapping between global nodal numbers and the
corresponding local nodal number, which in this case take the values {1, 2, 3, 4}.
Let nij be the global node number of the node that is mapped to local node
j when element i is transformed to the master element. Then, the M ×M
global stiffness matrix K can be assembled (by elements) by adding to the ini-
tially zero matrix the components σi (Kl)nijnik for j, k = 1, 2, 3, 4 where i loops
over the M elements. Note that we have not needed to include the Jacobian of
the transformation9 to the master square since this is a constant for all pixels.
Thus, each pixel contributes 16 components at the intersections of the rows and
columns with global nodal numbers on the element, the components are the lo-
cal stiffness matrix multiplied by the conductance. The global stiffness matrix
K is therefore very sparse with at most 9 non-zero elements per row. Note that
the constant vector is in the null space of Kl , and so the global stiffness matrix
has a zero eigenvector in the direction of the constant vector. Taking s = 0, the
discrete form of the variational statement is

φ = argminφTKφ− jTφ subject to φ · χb = 0 (5)

where χb is a vector that is 1 for nodes on the boundary and is otherwise zero.
The variational form for the discretized Green�s function for current source at
node k is then

gk = argmin
¡
gk
¢T
Kgk + 2

¡
gk
¢T
δk subject to gk · χb = 0 (6)

where δk is the vector which is 1 at node k and is otherwise zero.

III. Efficient BVP solution

The normal equations for the discrete quadratic forms 5 and 6 are difficult
to manipulate since they require the inverse of the global stiffness matrix which
is singular. However the minimum is well deÞned in the subspace deÞned by
the constraint. To work around the difficulty we deÞne a modiÞed quadratic
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form by projecting the potential onto the subspace deÞned by the constraint
and adding a non-zero curvature orthogonal to the subspace. The potential is
then given by an unconstrained optimization and, hence, the modiÞed normal
equations are non-singular. The non-singular form is then suitable for direct
application of the Woodbury formula, which is the essence of the efficient BVP
solution method.

A. Non-singular matrix form

DeÞne the projection onto χb and the complementary projection
10

Pb =
χbχ

T
b

kχbk2
, P⊥ = I − Pb,

respectively, where I is the identity matrix. Note that P⊥ has the action of
subtracting the mean over the boundary from nodes on the boundary, and
is the identity for interior nodes. Let A = (P⊥KP⊥ + γPb). The term γPb
is a regularizing term to ensure that Pbgk = 0 with γ > 0 being otherwise
arbitrary. Then gk may be found by an unconstrained minimization of the
modiÞed quadratic form

gk = argmin
¡
gk
¢T
Agk + 2

¡
gk
¢T
P⊥δk.

The Hessian matrix A, unlike K, is invertible and the normal equations then
give

gk = −A−1P⊥δk. (7)

Since (P⊥)
2 = P⊥, (Pb)

2 = Pb and P⊥Pb = 0, the following results are straight-
forward to establish

Pbg
k = 0, P⊥gk = gk, gk =

¡−P⊥A−1P⊥¢ δk.
From equation 7, it follows that gk is the kth column of −A−1P⊥ and, since¡−P⊥A−1P⊥¢ is a symmetric matrix, gk is also the kth row. Hence we can
write the kl component of −A−1P⊥ as¡−A−1P⊥¢kl = gkl = glk.
As observed in section 4, the Green�s function with source and Þeld-point at
electrodes deÞnes the forward map. These are the components gkl for k and l
being nodes corresponding to electrodes.

B. Application of the Woodbury Formula

Consider now a change to the conductivity, ∆σ, occurring at a few pixels.
Denote by k1, k2, · · · , kR the global nodal numbers for the nodes on the conduc-
tivity change and let C = {k1, k2, · · · , kR} be the set of all these indices. For
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a single pixel change to the conductivity R = 4 indices, while for a two pixel
change in conductivity R ≤ 8. The corresponding change in the global stiffness
matrix is the matrix ∆K which is just the global stiffness matrix for ∆σ. That
is, σ +∆σ has the global stiffness matrix K +∆K, where K and ∆K are the
global stiffness matrices for σ and ∆σ, respectively. Since ∆K is non-zero only
at the intersection of rows and columns in C, a single pixel change to the con-
ductivity changes 16 components of K, while a two pixel change in conductivity
changes at most 64 components of K.
The forward map, and consequently the Likelihood, for a given set of mea-

surement currents is determined by the Green�s function components gkl for k
and l being nodes corresponding to electrodes. Since the Green�s functions are
the columns of −A−1P⊥ requiring the inverse of the modiÞed global stiffness
matrix, consequently the Likelihood can be calculated cheaply if the appropriate
rows of the inverse can be easily calculated. The Woodbury formula gives an
efficient way of updating the inverse matrix requiring a matrix inversion of the
size of the number of nodes at which a change is made.
For an arbitraryM×M matrix A, and arbitraryM×R matrices U andW ,

the Woodbury formula11 is¡
A+ UWT

¢−1
= A−1 −

h
A−1U

¡
I +WTA−1U

¢−1
WTA−1

i
.

The matrix inversion required is of size R×R which is cheap when R¿M .
The change to the global stiffness matrix can always be written as an outer

product of two matrices ∆K = UWT. For example, when the conductivity
at the single pixel i is changed by ∆σi, let U be the 4 non-zero columns of
the M × M matrix that is the identity over the nodes on pixel i, and zero
elsewhere, whileW is the 4 non-zero columns of the global stiffness matrix for a
conductivity ∆σi at pixel i and is zero elsewhere. Many choices of appropriate
matrices can be made; one possibility that exploits the defective rank of the
local stiffness matrix is to use the eigenvectors of that matrix to Þnd M × 3
matrices.
If the conductivity change occurs at pixels that do not have nodes on the

boundary, then both U andW are zero for nodes on the boundary and it follows
that

P⊥U = U and P⊥W =W. (8)

The change to the modiÞed Hessian matrixA then also equals UWT. We restrict
our attention to this case, where conductivity changes occur away from the
boundary, since typically the conductivity near the boundary is well determined
by measurements and evolution of the conductivity solely consists of changes
away from the boundary. Using the relationships 8 to substitute for U and W
in the Woodbury formula, and that (P⊥)

T
= P⊥, the change to the kl element

of −A−1P⊥ is
∆gkl = −

h
A−1P⊥U

¡
I +WTP⊥A−1P⊥U

¢−1
WTP⊥A−1P⊥

i
kl

= − ¡gk¢T U ¡I +WTP⊥A−1P⊥U
¢−1

WTgl.
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Since U and W are non-zero only for the R rows in C, we can further reduce
the number of calculations required to evaluate this expression. We use the
(Matlab-like) notation WC,: to denote the rows of W with indices in C, giving
the R×R matrix of non-zero entries of W . Similarly by UC,: denote the R×R
matrix of non-zero elements of U . Also, let gCC denote the R × R matrix of
components of −A−1P⊥ at the intersection of rows and columns in C, and gkC
the R-vector of rows of gk with indices in C. Then

∆gkl = −
¡
gkC
¢T
UC,:

³
I − (WC,:)

T
gCCUC,:

´−1
(WC,:)

T
glC. (9)

Hence calculation of the Likelihood requires 4 R×R matrix multiplications, a
single R×R inversion, and 2E2 dot products of length R to Þnd the kernel of the
transform in 3. Further calculations of order E2 may be required, depending
on the current vectors used. The cost may be reduced further by using the
symmetry of all the matrices, though the saving is not substantial.
The calculation in 9 requires storage of various components of the Green�s

function. The terms
¡
gk
¢T
and gl require the E Green�s functions which have

sources at electrodes, requiring E×M components stored. The term gCC requires
the Green�s function at each node in C when the source point is also in C.
Given that the change may occur anywhere in the image, this term requires
16×M values stored for single pixel changes or 64×M for two pixel moves with
a maximum gap of 2 pixels between pixels being changed. Again, symmetry
may be used to approximately halve these storage requirements, though then
indexing in the implementation becomes complicated.

1. Rejection step

When a candidate state is proposed in step I of the MCMC algorithm, the
Likelihood of the candidate required in step II may be calculated using the
scheme described in the previous section. If the candidate state is rejected in
step IV, no further calculations are required. In particular, no adjustment to
the stored Green�s functions is required as the subsequent state is unchanged
from the present state. Thus, rejection steps are very cheap computationally.

2. Acceptance step

When a candidate conductivity state is accepted the global stiffness matrix
must be updated and the consequent changes in the stored Green�s functions
must be computed. Again the Woodbury formula in 9 can be used to efficiently
recalculate these values. Using the symmetry of the Green�s function gkj = g

j
k,

changes to any component of A−1 may be computed given all values of the
Green�s function for sources at nodes on the pixels that were changed. That
is, all values gkl ∀l ∈ C and ∀k = 1, 2, · · · ,M . It is not practical to store
all these components of the Green�s function as then we would need to store
all of the matrix A−1 which exceeds the typical storage capacities for all but
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the smallest images. At present we can see no alternative to simply having to
calculate these Green�s functions following an acceptance. These R solutions
of the BVP require O

¡
RM2

¢
calculations in all, and make an acceptance step

computationally expensive.

IV. Numerical Experiments

We now give two examples of sampling conductivity images from the poste-
rior distribution for simple synthetic data sets. The images are square with 16
point electrodes placed evenly around the boundary, i.e., with 4 electrodes per
side. With this number of electrodes there are 120 independent measurements
available7 which exceeds the roughly 103 independent measurables available via
the continuous forward map12 for the noise levels we will use. Thus the mea-
surement set is effectively a complete measurement of the mapping in 3.
The two examples have discrete-valued conductivity distributions: the Þrst

being a 24×24 pixel image of a two-valued conductivity, the second is a 25×25
pixel image of a three-valued conductivity. The same discretization is used for
generating the synthetic data as the reconstruction. In both cases the number of
pixels exceeds the number of measurables and so prior information is required.
We use Potts prior distributions in both cases with the lumping constant set to
1.
These examples are not intended to be deÞnitive uses of prior information

or of reconstruction. Rather they are given to demonstrate that sampling is
tractable for forward problems requiring solution of a BVP and with prior in-
formation that gives a discrete, discontinuous, image space.
Figure 1 shows results for the Þrst example. In subÞgures a, b, and c,

black and white correspond to a conductivities of 3 and 4, respectively. Grey
levels in subÞgure c are proportional to the conductivity between these two
extreme values. The synthetic data set has zero-mean Gaussian noise added with
standard deviation of 0.003 times the r.m.s. measurements. This signal to noise
ratio of 50dB is typical for good biological measurements. SubÞgure a shows the
true image. SubÞgure b is a sample from the chain in the long term, with the
chain having been started from a random state. The similarity of the sample and
the true image indicates that the chain has reached the equilibrium, posterior,
distribution. SubÞgure c is the mean calculated over the entire chain, including
burn-in, and it is clear that the mean provides a reasonable reconstruction of the
true image. SubÞgure d is the sample variance of the mean with black indicating
large variance while white indicates zero variance. It is interesting to note that
there is large variance around the edges of the two conductivity inclusions while
the background conductivity and the pixels internal to the inclusions are well
determined. The low level non-zero variance between the two inclusions is a
remnant of the samples occurring during burn-in; this feature disappears in the
limit of inÞnitely many samples since, as can be seen in subÞgure b, samples in
equilibrium have the correct background conductivity in this area.
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Figure 2 shows results for a three-level example with conductivity levels of
1 (black) 2 (half grey) and 3 (white). Again subÞgures a, b, and c, give the
true image, an equilibrium sample, and the mean image, respectively. For these
images the synthetic data has additive Gaussian noise with standard deviation
of 0.01 times the r.m.s. measurement level � or a signal to noise ratio of 40dB.
As in the previous example the sampler was started from a random image, and
the similarity of the state in subÞgure c and the true image shows that the
chain has reached equilibrium. The variance of the mean is given in subÞgure
d with black indicating large variance and white indicating zero variance. Fig-
ure 3 shows a trace of the log-likelihood, up to an additive constant, and the
log-prior. It is interesting to see that the likelihood (lower trace) reaches its
equilibrium value very quickly, while the prior reaches equilibrium more slowly.
This indicates that there are many states, particularly during burn-in, which
have high likelihood but low prior values and hence do not make good recon-
structions. This is a consequence of there being many more pixels in the image
than are effectively constrained by the measurements at the noise level used.
Hence we see that the prior is critical in forming a clean image, with few regions
of constant conductivity.

V. Conclusions

We have laid out a formalism for the efficient simulation of the posterior
distribution of the conductance imaging problem. In particular we have outlined
an algorithm that ensures that the steps requiring solution of the BVP can be
performed rapidly. We expect that the same computational structure will also
lead to efficient algorithms for other inverse problems where the forward map
requires solution of a PDE.
Experiments from synthetic data achieved ergodic behavior of the Markov

chain in reasonable times, demonstrating that sampling from this class of prob-
lems is tractable and hence it is feasible to calculate expectations over the poste-
rior distribution. Removal of the approximation inherent in using the linearized
forward map allowed us to investigate wider ranges of measurement noise, and
achieve better mixing in equilibrium, compared to our previous algorithms.
Whilst this is cause for satisfaction, it remains unclear that the algorithm

we have given will be effective for real data. However, given the optimal way
in which the Woodbury formula evaluates the likelihood, we expect that the
algorithm we have given will play some part in a full resolution of the problem
of image reconstruction from wave scattering data via Bayesian inference.
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a b

c d

Figure 1: Numerical results for reconstruction of a two-level conductivity dis-
tribution with conductivities 3 (background) and 4 (inclusions). SubÞgure a
is the true image, subÞgure b is an example of a sample from the posterior in
equilibrium, subÞgure c is the mean image over the entire chain, subÞgure d is
the sample variance of the mean.
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a b

c d

Figure 2: Numerical results for reconstruction of a three-level conductivity dis-
tribution with conductivities 1 (black), 2 (grey), and 3 (white). SubÞgure a is
the true image, subÞgure b is a sample from the posterior in equilibrium, Þgure
c is the mean image over the entire chain, Þgure d is the sample variance of the
mean.
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Figure 3: Trace of log-likelihood (lower trace) and log-prior (upper trace) for
three-level conductivity example. Vertical scales are the same, though log-
likelihood is shifted by an additive constant.
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