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In this talk

• Inferential formulation

• What problem are we trying to solve? (Questions and answers)

• Some inverse problems and image models

• A taste of the details



Bayesian Formulation for Inverse problems

d = Ax + n: data d, image x, measurement noise n, forward map A
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Posterior distribution for x conditional on d

π (x|d, m) ∝ Pr (d|x, m)Pr (x|m) (Bayes’ rule)

Posterior probability determined by measurement process, modelling, probability

State space determined by modelling
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Bayesian Formulation for Inverse problems

d = Ax + n: data d, image x, measurement noise n, forward map A
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Posterior distribution for x conditional on d

π (x|d, m) ∝ Pr (d|x, m)Pr (x|m) (Bayes’ rule)

Posterior distribution is sole basis for inference

Often π(x|d, m) ∝ exp {−χ (d−A(x))− ρ (x)}



Interpreting the Posterior Distribution

x

Pr(x|d)

Unique solution



Interpreting the Posterior Distribution

x

Pr(x|d)

Unique solution

x

Pr(x|d)

Solution localized



Interpreting the Posterior Distribution

x

Pr(x|d)

Unique solution

x

Pr(x|d)

Solution localized

x

Pr(x|d)

Solution not localized
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Solutions = Summary Statistics

Bayes’ rule produces the posterior distribution π (x|d) containing all information

Traditional Solutions - modes

x̂MLE = arg max Pr (d|x) x̂MAP = arg max π (x|d)

e.g. Gaussian noise and prior: Pr (x) ∝ exp
(
− |x|2 /2λ2

)
x̂MAP = arg min |d−A(x)|2 + α |x|2 α = s2/λ2

• Tikhonov regularization, Kalman filtering, Backus-Gilbert, α = 0 least-squares

Inferential Solutions - expectations

E [f (x)] =
∫

π (x|d) f (x) dx

E.g. if f (x) = indicator function that image shows cancer

E [f (x)] is posterior probability (based on measurements, prior) that patient has cancer.
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Figure 8.1 A binary image f and a noise-corrupted data set d obtained by adding samples of independent zero
mean Gaussian noise of standard deviation ¾ = 2 to the image.

The likelihood function for this problem is given by

Pr (djf) / exp
"
¡ 1

2¾2

X
m;n

(dmn ¡ fmn)2
#
:

In order to ¯nd the posterior probability function, a prior probability distribution Pr (f) is required. This
encodes our state of knowledge about which images are (µa priori, without any data) more likely to occur.
For example, we might

1. have no prior prejudice whatsoever, i.e., Pr (f) = 2¡MN ; which is uniform on ­:

2. favour smooth images: since the material is likely to be in lumps, we regard reconstructions in which
the 1's and -1's separate out in blobs as a priori more probable. In this case, the binary Markov
random ¯eld of the last section might make a reasonable choice:

Pr (f) =
1

Z exp (¡2J#f) ; (8.2)

where J is our lumping parameter. When J = 0; there is no smoothing, whereas if J is large, we
favour a uniform image of a single colour. A model which favours \simple" reconstructions is called
parsimonious.

8.2.1 Uniform Prior

If we use the uniform prior, the posterior probability is equal to the likelihood. An implementation of the
Metropolis-Hastings Markov Chain Monte Carlo (MH MCMC) algorithm which draws samples from the
posterior probability involves the following steps:

1. Let Xn = f denote the current state of the Markov chain. A pixel with coordinates kl is selected at
random and the colour of the pixel is °ipped, producing a candidate state f 0 where

f 0ij =
½ ¡fkl if i = k and j = l

fij otherwise
(8.3)

The generation probability g (f 0jf) is zero if f 0 and f di®er by more than one pixel, and is equal to
1= (MN) if they di®er by exactly one pixel.

• “best” image

• If I know the image is binary (black and white) how many blobs are there?

• What is the area of the blob ?

• Does the blob have an inclusion (‘C’ or ‘O’)

• what is the cost of getting that decision wrong?

PHYSICS 707 Inverse Problems, Course notes F, Nicholls Tan, The University of Auckland



Coloured Continuum Triangulation

X =
∞⋃
i=0

{[0, 1]× [0, 1]}i , coloured

Geoff Nicholls, Bayesian image analysis with Markov chain Monte Carlo and colored continuum trian-

gulation models JRSSB 60:3 643-659 (1998)



Neolithic hill fort (Maori pa)
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A) data, 1746 resistivity readings, (B) posterior mean resistivity, (C) posterior edge length density,

(D1-3) samples from posterior



Electrical Impedance Tomography

For fixed current patterns {I}
A : σ 7→ {U}

Simulate A by solving the BVP

∇ · σ∇u = 0∫
el

σ
∂u

∂n
dS = Il

σ
∂u

∂n

∣∣∣∣
∂Ω\

S
l el

= 0(
u + zlσ

∂u

∂n

)∣∣∣∣
el

= Ul

Posterior density

π(σ | V ) ∼ exp
{
−

(
1
2
(V − U(σ))TC−1

n (V − U(σ))
)}

πpr(σ)



Gaussian smoothness prior

In the following figures, the sample based estimates are based on 12 parallel
realisations of the MCMC run. However, the convergence analysis figures
(i.e., autocorrelation and output trace) are based on one of the simulated
chains (realisation 12). Thus, the total number of draws for each case is 12
times the length of the log-posterior in the output image. The “parallized”
implementation is based on shell script that sends independent MatLab-
processes to each slave node of the Beowulf computer.

The results with Gaussian smoothness prior are shown in Figs. 1-2, the
results with material type prior are in Figs. 3-4, and the results with the
circle prior in Figs. 5-6

0.01 8.24

0.01 8.24 0.02 0.04

Figure 1: Results with the Gaussian smoothness MRF-prior. Top left: Photo-
graph of the measurement setup. Top right: Maximum a posteriori estimate
σMAP by the Gauss-Newton optimization algorithm. Bottom left and right:
Posterior mean σCM and variance based on the MCMC simulation.

7

Kolehmainen, Fox and Nicholls, MCMC Inversion of Measured EIT Data, 200?



Material type prior – Nicholls, F 1998

0.01 7.36

0.01 12.76 0.01 7.36

Figure 3: Results with the Material type MRF-prior. Top left: Photograph
of the measurement setup. Top right: Posterior mean for the conductivity.
Bottom left: Posterior variance of the conductivity. Bottom right: One
sample from the posterior.

tation; Thus, I believe that the individual chains would eventually con-
verge to same estimates if we run the simulation long enough. Longer
test runs with simulated and real data will be carried out. After these
tests we can decide whether modifications for more efficient moves are
needed.

• Systematic errors: The EIT-system in Kuopio had some systematic
errors in calibration when the data was measured. Thus, the forward
model had to be calibrated against empty tank measurement in order
to get rid of the systematic errors. This may be bit questionable thing
to do but is acceptable for the purpose of this paper. In addition,
we are working on the system calibration, and some new data will be

9

Kolehmainen F Nicholls MCMC Inversion of Measured EIT Data, 200?



Uncertainty due to shielding

A  B  

C  D  

E  F  

G  H  

Nicholls, F (1998)



Circular inclusions prior

0.01 7.19

−0 12.93 0.01 7.19

Figure 5: Results with the circle prior. Top left: Photograph of the mea-
surement setup. Top right: Posterior mean for the conductivity. Bottom
left: Posterior variance of the conductivity. Bottom right: Sample from the
posterior.
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Kolehmainen F Nicholls MCMC Inversion of Measured EIT Data, 200?



Estimation coefficient in a PDE :: diffusion

∂u

∂t
= D

∂2u

∂x2
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The posterior probability density is thus given by

p (Djy) /
8<: exp

·
¡1
2

PK
i=1

³
yi¡u(xi;T ;D)

s

´2¸
if D ¸ 0

0 otherwise
(8.38)

We can estimate D given y using sample-based inference.

Let Xn = D; Xn+1 is given in the following way:

1. Let w be a positive constant. Draw r from a uniform distribution on [0; 1] and set D0 = D+w (2r ¡ 1)
2. With probability

® (D0jD) = min

8>>>><>>>>:1;
exp

"
¡1
2

PK
i=1

µ
yi¡u(xi;T ;D0)

s

¶2#
exp

·
¡1
2

PK
i=1

³
yi¡u(xi;T ;D)

s

´2¸
9>>>>=>>>>;

set Xn+1 = D
0; otherwise set Xn+1 = D:

Notice that at each step of the MCMC algorithm, we must compute u (xi; T ;D) ; (i.e., solve the boundary
value problem for a trial value of D) to work out what the solution would have looked like at T if the true
di®usivity were given.
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Figure 8.7 Surface is u (x; t) with the true value of D and the points show the data measured at T:

The Matlab code to carry out this simulation is:

L = 10;

D = 0.5;

s = 0.03;

Tmax = 2;

xdim = 25; tdim = 75;

x = linspace(0,L,xdim);

t = linspace(0,Tmax,tdim);
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Figure 8.9 Posterior distribution of di®usivity. True D value was 0:5

Consider two states x and x0 2 ­ such that x is a mode (i.e., x 2 ¡) but x0 is not modal (i.e., x0 =2 ¡). Since
Q (x0) < Q (x) ; q (x0) > q (x) and so the ratio

QT (x0)
QT (x)

= exp

·
q (x)¡ q (x0)

T

¸
(8.41)

tends to zero as T ! 0: Hence as T ! 0; all probability mass in distribution QT is concentrated on states
in ¡: we can ¯nd modal states (or state) by sampling QT (x) at small T; using MCMC.

Roughly, the idea is to run a MCMC algorithm with equilibrium distribution ¼T = QT . If the chain is in
equilibrium at temperature T (ie ¼(n) = QT ) at step n and we lower the temperature to T 0 < T , we must
then wait for the chain to equilibrate at the new temperature. We lower the temperature slowly, so that the
chain remains in or close to equilibrium with QT at each new temperature. At small T ¼T » 1=j¡j and our
MCMC returns a sample uniform on the mode states.

Suppose an ergodic Metropolis-Hastings algorithm with generation distribution g(x0jx) is given. The al-
gorithm simulates some Markov chain with states x 2 ­, initializing distribution X0 » PrfX0 = xg and
equilibrium distribution Q(x) = exp(¡q(x))=Z. Specify T (n), a decreasing function of n called the cooling
or annealing schedule. The following Simulated Annealing Algorithm simulates an inhomogeneous
Markov Chain.

Let Xn = x. Xn+1 is determined in the following way.
1. Generate candidate state x0 from g (x0jx)
2. With probability

® = min

½
1; exp [¡ (q (x0)¡ q (x)) =T (n)] g (xjx

0)
g (x0jx)

¾
set Xn+1 = x0, otherwise, set Xn+1 = x.

De¯nition 1 If ¼(n) becomes uniform on ¡ as n!1; ie if Pr ¡x(n) 2 ¡¢! 1 as n!1; we say that the
annealing \converges".

De¯nition 2 Let Q (x), x 2 ­ be a given distribution with mode-set ¡: A state x 2 ­ communicates with
¡ at height h if there is a path from x into ¡ with the property that the largest value of q = ¡ lnQ along the
path is q (x) + h:

PHYSICS 707 Inverse Problems, Course notes F, Nicholls Tan, The University of Auckland



Oceanography :: abyssal advection

210 215 220 225 230 235 240 245 250 255 260

−40 −30 −20 −10 0 10

−35

−30

−25

−20

−15

−10

−5

oxygen (28, 2093.24)



Oceanography :: 2 samples

Oxygen, run 1
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Oxygen, run 2
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McKeague Nicholls Speer Herbei, Statistical Inversion of South Atlantic Circulation in an Abyssal

Neutral Density Layer, Journal of Marine Research 2005



Tree/Graph Model of Language Evolution

Bryant, Gray (2006)



Stochastic Dollo Model
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Question: should we use a tree at all?

θ =branching rate, λ =cognate birth rate, µ =per capita death rate. Exact integral over θ,

λ, MCMC for µ and graphs.

Nicholls, Gray (2002)



U.N. voting patterns since 1990
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Marked Point Process
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Figure 7: A second data slice (top); a sample from the posterior after 20,000 iterations (middle);

histogram of the cell attributes eccentricity, size and intensity (bottom).

automatic method would have been ideal, this is a small amount of interaction compared to the previous

approach of outlining the whole perimeter of each cell.

Given a sound initialisation, MCMC sampling provides a straightforward framework for estimating

the parameters of fitted cells and relating these to the phases in cell development. For example, we can

generate interval estimates of typical cell size or other population attributes. Figure 7 shows another

example of a data image, together with a sample image from the posterior distribution and histograms

of three cell attributes: the average eccentricity (ratio of minor to major axis length), average size and

average intensity in the cell population. Here, attribute values were recorded at regular intervals during

the MCMC run of 20,000 iterations.
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Fahimah Al-Awadhi, Christopher Jennison, Merrilee Hurn (2003)



Marked Point Process (cont)

Josiane Zerubia, Xavier Descombes, C. Lacoste, M. Ortner, R. Stoica (2000, 2003)



Details :: Markov chain Monte Carlo

• Monte Carlo integration: If {Xt, t = 1, 2, . . . , n} are sampled from π (x)

E [f (x)] ≈ 1
n

n∑
t=1

f (Xt)

• Markov chain: Generate {Xt}∞t=0 as a Markov chain of random variables Xt ∈ X, with a

t-step distribution Pr(Xt = x|X0 = x(0)) that tends to π(x), as t →∞.

Metropolis-Hastings algorithm

1. given state xt at time t generate candidate state x′ from a proposal distribution q (.|xt)

2. With probability α
(
xt → x′

)
= min

(
1,

π(x′)q (xt|x′)
π(xt)q (x′|xt)

)
set Xt+1 = x′ otherwise Xt+1 = xt

3. Repeat

q (.|xt) can be any distribution that ensures the chain is irreducible and aperiodic.



Conclusions

1. Inferential formulation quantifies uncertainty in unknown x

2. Bayesian methods give a machinery for combining uncertainties, forward modelling, expert

knowledge, cost of decisions, etc

3. Provide posterior uncertainties for given data (cf. CRLB)

4. In principle all desired computations possible using MCMC

5. These methods solve substantial problem in tomography, image classification, economics,

biology, history, ....

6. Lots of outstanding research issues
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