Fast Jacobian and Transpose of Jacobian Operation
for EIT

(and other inverse problems)

Colin Fox




Outline

e Why worry about the Jacobian and its transpose?
e Simplest example — symmetric matrix equation

e The real deal — FEM discretization of complete electrode model




Jacobian and Jacobian Transpose
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Jacobian and Jacobian Transpose

d = Ax: data d, image x, forward mapA
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derivatives, gradients map as
Ad = JAz Ve=J"Vy4

where the Jacobian is
Jij(z) =

8zvj (ZU)




Least Squares

Z = argmin ||dy — A (z)]|3
o
gradient-based optimization algorithms (quasi-Newton, conjugate gradients) use

Vo lldm — A(@)ll; = 27" (dm — A(z))

Linearization

Az + Az) = A(z) + JAz + O (qu?)

Gauss-Newton approximation

VV ||dm — A (2)||7 =~ 2JTJ




Speeding-Up MCMC Sampling from f(:)

1. At z(!) generate proposal y from ¢(- | z®)

2. Let

q(z | y) f7(y) }
q(y | z) fi(x)

W.p. g(z®,y), “promote” y. New proposal distribution is

g9(z,y) = min {1

¢ (y|z) =g y)qly|x)+ (1 —r())d(y)

3. Let

_ i1 €@ 1Y) fy)
plas) = min {1, G20 20

W.p. p(z®, 1) accept y setting z(*+1) = ¢/ otherwise z(*+1) = z(*)

J. Andrés Christen and Colin Fox, MCMC using an Approximation, Journal of Computational and
Graphical Statistics, 2005/6
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= min T
P, y) = {1’q*<yras> @)

W.p. p(z®, 1) accept y setting z(*+1) = ¢/ otherwise z(*+1) = z(*)

(z | y) f(y)}

e.g.
fz(x + Az|d) oc exp {—x (d — (A(z) + JAz)) — p(z)}

J. Andrés Christen and Colin Fox, MCMC using an Approximation, Journal of Computational and
Graphical Statistics, 2005/6




Simplest case: Matrix equation

Consider the inverse problem where simulation of measurements requires solving the matrix

equation
Y,v=1

i is fixed, v is measured (data)

Y, is a symmetric nonsingular (positive definite) linear N x N matrix function of 0 € RM

Initially think of ¢ as a single vector
Typically measurements are of v; : j € E=1,2,...,|E| < N for a set of fixed i : 4,7 € E

are determined, with other components being zero.
Defines forward map

, 1

Ao (Y, )EE

Inverse problem is to find o from noisy measurement of (Y‘1

o )EE
What is the Jacobian?



Change in v due to change in Y, o

(Y, +dY,) (v+dv) =i = Y,dv=—dY, (v+ dv)

To first order

o __adYs
dO‘j o dO‘j
Chain rule gives a general change
dv=Jdo = —Y» Y~ 14
v = Jdo Z da]
- Z dgj
= -Y, 1ngv

A minimum simulation of all measurements generates G = (Ya_l): - Since (Y‘l)E: =GT

Jdo =d (Y, ~G'Yy,G

s )eE=



Cheap calculation for sparse Y,

For ‘local’ changes, do, when local stiffness matrix is small, Y, is sparse

For single site change Aoy,

/

Jdo = —Aoyy, (GLE — Gm,E)T (Gi.E — Gm E)

Fox and Nicholls, Sampling Conductivity Images via MCMC, 1997




Fast Jacobian using low rank of Y.

When Yy, is positive semi-definite with rank p ~ 1
( e.g. resistor network p = 1, FEM with triangulation for EIT p = 2)

T
71

p
J =1

oot wpw]

Ye, = wjpw Jp

Let Wl: w1 Wwop v WN] forl:1,...,p

p
Jdo = -GG == G"WieW'G
=1

Kolehmainen, Fox and Nicholls, MCMC' Inversion of Measured EIT Data, 2007



Fast Transpose of Jacobian

J:or— vwhereois N x1andwvis |E| X |E]

Calculation of
JV vi=o

Is similar




Complete Electrode Model for EIT

For fixed current patterns {1}
A:o—A{U}

Simulate A by solving the BVP
V-oVu=0

ou
B o I
: aﬁnds I

ou _ 0

o—
on o0\ Ul €l

ou
(u - zlaa—n> = U

€l

Likelihood

LiolV) xexp {5z IV - A @) |




(Kuopio) FEM Discretization

[E|-1

Np
u = Zozigoi U= Z Dy
i=1 j=1

n; is jM column of D, the |E| — 1 dim basis of current patterns. Weak form of BVP is

Mb=f
where
Q 0 B C
B DTT ct G
and

|E|
1
Bi’j = / O'VQOZ"VQOJ'CZ?“—F g _/ @i%pjds 1<4,5< Np
o =1 L e

C' and G due to electrode BC. Then U = Dg.

Assemble FEM matrix system, solve |E/| times.



Implementing ‘Matrix’ Scheme

Symmetrize calculation by picking a suitable set of |E| currents that span space and solve for

Green's functions, e.g.

1
K=1-— G=M'f=
|| K

Measurements patterns M = K Mj, so (A_lMT)T — MlTG, and f=Kfisob=Gf;

— L7l il dal
JO'Z (A I ) lb IlG Gfl

turns out that in Kuopio FEM K =1, M = - K

Jo = 3 (@) ()

=1

=y (6w) e (ew)

=1

p



Summary

e Operating by Jacobian and transpose is (~ 10x) faster than forming Jacobian with matrix
multiplication

e Useful in implementing Langevin diffusion, gradient ascent, linearization, etc

e Scheme works for EIT, narrow-band acoustic backscatter, etc
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