Statistical Estimation of the Parameters of a PDE

Colin Fox, Geoff Nicholls (University of Auckland)

- Nomenclature for image recovery
- Statistical model for inverse problems
- Traditional approaches deconvolution example
- Recovering electrical conductivity via inference

Image Recovery nomenclature for Inverse Problems

Image: spatially varying quantity of interest optical reflectance of a scene optical or radio brightness of sky sound speed in tissue / ocean / earth electrical conductivity of tissue / mud

Recovery: estimate image from indirect data

Forward Problem

Inverse Problem

image → data physical model (PDE) direct computation well posed unique data → image implicit indirect ill posed never unique

Conductivity Imaging Measurement Set

- Electrodes at x_1, x_2, \cdots, x_E
- Assert currents at electrodes $j = (j(x_1), j(x_2), \dots, j(x_E))^T$
- Measure voltages $v = (\phi(x_1), \phi(x_2), \dots, \phi(x_E))^T$.

Unknown $\sigma\left(x\right)$ related to measurements via Neumann BVP

$$\nabla \cdot \sigma (x) \nabla \phi (x) = 0 \qquad x \in \Omega$$

$$\sigma (x) \frac{\partial \phi (x)}{\partial n (x)} = j (x) \qquad x \in \partial \Omega$$

• Set of measurements is current-voltage pairs

$$\{j^n, v^n\}_{n=1}^N$$

Inverse problem is to find σ from these measurements (non linear)

Statistical model of Inverse Problem

If
$$n \sim N(0, s^2)$$
, $v \sim N(PK\sigma, s^2)$
Given measurements v , the likelihood for σ is

$$L_v(\sigma) \equiv \Pr(v|\sigma) \propto \exp(|v - \phi(\sigma)|^2/2s^2)$$

Posterior distribution for σ conditional on v

$$\Pr(\sigma|v) = \frac{\Pr(v|\sigma)\Pr(\sigma)}{\Pr(v)}$$
 (Bayes rule)

 $\Pr(\sigma)$ is the prior distribution

Solutions = Summary Statistics

All information contained in posterior distribution $\Pr(\sigma|v)$

Traditional Solutions - modes

 $\hat{\sigma}_{\text{MLE}} = \arg \max L_{v}(\sigma) \equiv \arg \max \Pr(v|\sigma)$ $\hat{\sigma}_{\text{MAP}} = \arg \max \Pr(\sigma|v) \equiv \arg \max \Pr(v|\sigma) \Pr(\sigma)$

e.g. simple Gaussian prior:
$$\Pr(\sigma) \propto \exp\left(-|\sigma|^2/2\lambda^2\right)$$

 $\hat{\sigma}_{MAP} = \arg\min|v - \phi(\sigma)|^2 + \alpha |\sigma|^2 \qquad \alpha = s^2/\lambda^2$

- Tikhonov regularization, Kalman filtering, Backus-Gilbert
- $\alpha \rightarrow 0$ Moore-Penrose inverse, $\alpha = 0$ least-squares

Inferential Solutions

"Answers" are expectations over the posterior

$$E[f(\sigma)] = \int Pr(\sigma|v) f(\sigma) d\sigma$$

$$Pr(\sigma|v) \int \int \int \int d\sigma d\sigma$$

Traditional Solutions – Fourier Deconvolution

The ill-conditioning of a problem does not mean that a meaningful approximate solution cannot be computed. Rather the ill-conditioning implies that standard methods in numerical linear algebra cannot be used in a straightforward way to compute such a solution. Instead, more sophisticated methods must be applied in order to ensure the computation of a meaningful solution.

This is the essential goal of regularization methods.

Noisey blurred image

Exact inverse

The ill-conditioning of a problem does not mean that a meaningful approximate solution cannot be computed. Rather the ill-conditioning implies that standard methods in numerical linear algebra cannot be used in a straightforward way to compute such a solution. Instead, more sophisticated methods must be applied in order to ensure the computation of a meaningful solution.

This is the essential goal of regularization methods.

MAP solution

Strationers straticity Stratic Conf. Status Sec. and articlestic St. Sec. and articlestic St. Stat. articlestic Francescovers

Bayesian Formulation for Conductivity Imaging

	current				conductivity
	in Ω	in Ω	electrode	electrode	
r.v.	R	Φ	V	J	\sum
value	ρ	ϕ	v	j	σ
Posterior					

Posterior

$$\Pr \{ \Sigma = \sigma, \Phi^{n} = \phi^{n}, R^{n} = \rho^{n} | \{J^{n}, V^{n}\} = \{j^{n}, v^{n}\} \}$$

=
$$\Pr \{ \{J^{n}, V^{n}\} = \{j^{n}, v^{n}\} | \Sigma = \sigma, \Phi^{n} = \phi^{n}, R^{n} = \rho^{n} \}$$

$$\times \Pr \{\Sigma = \sigma, \Phi^{n} = \phi^{n}, R^{n} = \rho^{n} \}$$

 $R = -\Sigma \nabla \Phi, \phi = \Gamma_{\sigma} \left(\rho |_{\partial \Omega} \right) \text{ and } \rho = -\sigma \nabla \phi$

$$\Pr\left\{\Sigma = \sigma, \Phi^n = \phi^n, R^n = \rho^n\right\} = \Pr\left\{\Sigma = \sigma, R^n = \rho^n\right\}$$

Stipulate
$$\Pr \{\Sigma = \sigma\}$$
 only – usually a MRF

$$L(\sigma, \phi^{n}, \rho^{n})$$

$$= \Pr\{\{J^{n}, V^{n}\} = \{j^{n}, v^{n}\} | \Sigma = \sigma, \Phi^{n} = \phi^{n}, R^{n} = \rho^{n}\}$$

$$= \Pr\{\{V^{n}\} = \{v^{n}\} | \Phi^{n} = \phi^{n}(\sigma, \rho^{n})\}$$

$$\times \Pr\{\{J^{n}\} = \{j^{n}\} | R^{n} = \rho^{n}\}$$

Errors i.i.d.

$$L(\sigma, \phi^n, \rho^n) = \prod_{n=1}^N \Pr\left\{V^n = v^n | \Phi^n = \Gamma_\sigma\left(\rho^n |_{\partial\Omega}\right)\right\} \\ \times \Pr\left\{J^n = j^n | R^n = \rho^n\right\}.$$

Noise is normal (say)

$$\Pr \left\{ J = j | R = \rho \right\} \sim \mathbb{N} \left(\left(\rho \left(\mathbf{x}_1 \right), \rho \left(\mathbf{x}_2 \right), \cdots, \rho \left(\mathbf{x}_k \right) \right)^{\mathrm{T}}, \mathbf{s}_{\rho}^2 \right)$$

Samples from the Prior

Markov chain Monte Carlo

• Monte Carlo integration If $\{X_t, t = 1, 2, ..., n\}$ are sampled from $\Pr(\sigma | v)$

$$\mathbf{E}\left[f\left(\sigma\right)\right] \approx \frac{1}{n} \sum_{t=1}^{n} f\left(X_{t}\right)$$

Markov chain
 Generate {X_t}[∞]_{t=0} as a Markov chain of random variables X_t
 ∈ Σ_Ω, with a *t*-step distribution Pr(X_t = σ|X₀ = σ⁽⁰⁾) that tends to Pr(σ|v), as t → ∞.

Metopolis-Hastings algorithm

- (1) given state σ_t at time t generate candidate state σ' from a proposal distribution $q(.|\sigma_t)$
- (2) Accept candidate with probability

$$\alpha\left(X|Y\right) = \min\left(1, \frac{\Pr(Y|v)q\left(X|Y\right)}{\Pr(X|v)q\left(Y|X\right)}\right)$$

- (3) If accepted, $X_{t+1} = \sigma'$ otherwise $X_{t+1} = \sigma_t$
- (4) Repeat
 - $q(.|\sigma_t)$ can be any distribution that ensures the chain is:
 - irreducible
 - aperiodic

Three-Move Metropolis Hastings

Choose one of 3 moves with probability ζ_p , p = 1, 2, 3

Transition probabilities $\{\Pr^{(p)}(X_{t+1} = \sigma_{t+1} | X_t = \sigma_t)\}_{p=1}^3$ (reversible w.r.t. $\Pr(\sigma|v)$).

Overall transition probability is

$$\Pr(X_{t+1} = \sigma_{t+1} | X_t = \sigma_t) \\ = \sum_{p=1}^{3} \zeta_p \Pr^{(p)}(X_{t+1} = \sigma_{t+1} | X_t = \sigma_t).$$

If at least one of the moves is irreducible on Σ_{Ω} , then the equilibrium distribution is $Pr(\sigma|v)$.

A pixel n is a *near-neighbour* of pixel m if their lattice distance is less than $\sqrt{8}$.

An *update-edge* is a pair of near-neighbouring pixels of unequal conductivity. ($\mathcal{N}^*(\sigma)$, $\mathcal{N}^*_m(\sigma)$)

Move 1*Flip a pixel*. Select a pixel m at random and assign σ_m a new conductivity σ'_m chosen uniformly at random from the other C - 1 conductivity values.

Move 2*Flip a pixel near a conductivity boundary*. Pick an update-edge at random from $\mathcal{N}^*(\sigma)$. Pick one of the two pixels in that edge at random, pixel *m* say. Proceed as in Move 1.

Move 3*Swap conductivities at a pair of pixels*. Pick an updateedge at random from $\mathcal{N}^*(\sigma)$. Set $\sigma'_m = \sigma_n$ and $\sigma'_n = \sigma_m$.

Experiment 1 (discrete variables – three conductivity levels)

D

A

B1

Experiment 2

(continuous variables – three conductivity types)

A

Summary

- If you can simulate the forward map then you can sample and calculate expectations over the posterior, i.e., 'solve' the inverse problem
- Statistical inference provides a unifying framework for inverse problems