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Image Recovery nomenclature for Inverse Problems

X-Tays X-1ays
in out

X-ray tomography

Image: spatially varying quantity of interest
optical reflectance of a scene
optical or radio brightness of sky
sound speed in tissue / ocean / earth

electrical conductivity of tissue / mud

Recovery: estimate image from indirect data

Forward Problem Inverse Problem
image — data data — 1mage
physical model (PDE) implicit
direct computation indirect
well posed ill posed

unique never unique
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Conductivity Imaging Measurement Set

Ny

LS
I
—>
Electrodes at 1, z9, - -+, g
Assert currents at electrodes j = (5 (1), j (z2), -+, j (xg))"

Measure voltages v = (¢ (z1) , ¢ (2z2), -+, & (z5))".

Unknown o () related to measurements via Neumann BVP

V.-o(zx)Veo(x) =0 x € ()

0¢ (z)
= J c 0f)
0 (@) g = 1@
Set of measurements is current-voltage pairs
{jnavn}gll

Inverse problem is to find o from these measurements

(non linear)
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Statistical model of Inverse Problem

true ideal noise . actual
image data free data
data
forward data
C—>» map [ »| loss [—> v=PKo+n
\K/ P + nOise
5
image
C < recovery
estimate algorithm
- constraints
prior knowledge - regularization
- preferences

Ifn ~ N(0,s%),v~ N(PKo, s*)

Given measurements v, the likelihood for o 1s
L,(0) = Pr(v]|o) oc exp(Jv — ¢(0)]?/257)

Posterior distribution for o conditional on v
Pr (v|o) Pr (o)

Pr (0] (Bayes rule)

Pr(olv) =

Pr (o)is the prior distribution
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Solutions = Summary Statistics
All information contained in posterior distribution Pr (o|v)

Traditional Solutions - modes

omLg = argmax L,(o) = argmax Pr (v|o)

omap = arg max Pr(o|v) = argmax Pr (v|o) Pr (o)

e.g. simple Gaussian prior: Pr (o) o exp (— o]/ 2)\2)
omap = argmin |v — (o) ? + a |o|” o =52\

e Tikhonov regularization, Kalman filtering, Backus-Gilbert

e « — (0 Moore-Penrose inverse, o = 0 least-squares
Inferential Solutions

“Answers” are expectations over the posterior
ELf (o) = [ Pr(olo) £ (0) do

A
Pr(o}v)
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Traditional Solutions — Fourier Deconvolution
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Noisey blurred image

Exact inverse

The ill-conditioning of a prablerm does
naot mean that a meaningful approximate
solution cannot be computed. Rather
the ill-conditioning implies that standard
methods in numercal linear algebra
cannot be used in a straightforward way
to compute such a solution. Instead,
mare sophisticated methods must be
applied in order to ensure the Probilens
computation of a meaningful solution,

ng data
This is the essential goal of be caonsidered
regularization methods.

MAP solution



PIMS-MITACS 2001

Bayesian Formulation for Conductivity Imaging

current potential voltage current conductivity
in €) in ()  electrode electrode
I.V. R o V J )
value| p 1) v J o
Posterior

Pr{¥=0,0"=¢", R" = p"[{J", V"} ={j",v"}}
= Pr{{J"V"} ={j" 0"} | =0,0"=¢", R" = p"}
xPr{¥ =0,0" =¢" R" = p"}
R=—SV®,¢ =T, (plm) and p = —oVo
Pr{¥=0,"=¢",R"=p"} =Pr{¥=0,R"=p"}
Stipulate Pr {3 = o} only — usually a MRF
L(o,¢", p")
= Pr{{J"V"} ={j"v"}|X=0,9"=¢", R" = p"}
= Pr{{V"} = {v"}[®" = ¢"(0,0")}
xPr{{J"} = {7"} |R" = p"}
Errors 1.1.d.
L(o,¢",p") = I Pr{V" = v"|®" =T, (p"|on)}
xPr{J"=j"|R"=p"}.

Noise is normal (say)

Pr{J =jlR=p} ~ N (o). p(x2) - p ()T
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Samples from the Prior

il
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(D

2)

)
(4)

Markov chain Monte Carlo

Monte Carlo integration
If{X;,t=1,2,...,n} are sampled from Pr (c|v)

B[f ()]~ — 3 £ ()

Markov chain

Generate { X;}7°, as a Markov chain of random variables X
€ Yq, with a t-step distribution Pr(X; = o| Xy = ¢'?) that
tends to Pr(o|v), as t — oo.

Metopolis-Hastings algorithm

given state o;at time ¢ generate candidate state ¢’ from a
proposal distribution ¢ (.|o;)

Accept candidate with probability

Pr(Ylv)g (X!Y)>
Pr(X|v)q (Y]X)

If accepted, X;.; = o otherwise X;. | = o
P + +

a (X[Y) = min (1

Repeat

q (.|o+) can be any distribution that ensures the chain is:
— irreducible

— aperiodic
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Three-Move Metropolis Hastings

Choose one of 3 moves with probability ¢, p =1,2,3
Transition probabilities {Pr? (X, 1 = oy1| X = o)}
(reversible w.r.t. Pr(o|v)).

Overall transition probability is

Pr<Xt—l—1 — O-t—l—l‘Xt — Ut)
3
= Z Gp Pr <p)(Xt+1 = 01| Xy = 0y).
p=1

If at least one of the moves 1s irreducible on >.q, then the
equilibrium distribution is Pr(c|v).

A pixel n is a near-neighbour of pixel m if their lattice
distance 1s less than \/g

An update-edge 1s a pair of near-neighbouring pixels of
unequal conductivity. (N*(o) , N (o))

Move 1Flip a pixel. Select a pixel m at random and assign o,
a new conductivity o chosen uniformly at random from the
other C — 1 conductivity values.

Move 2Flip a pixel near a conductivity boundary. Pick an
update-edge at random from N *(o). Pick one of the two pixels
in that edge at random, pixel m say. Proceed as in Move 1.

Move 3Swap conductivities at a pair of pixels. Pick an update-
edge at random from N*(o). Set o/, = 0, and o/, = 7,
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Experiment 1
(discrete variables — three conductivity levels)

A!
BIE B2
E ...-
C D
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Experiment 2
(continuous variables — three conductivity types)

.
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Experiment 3
(shielding)
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Summary

If you can simulate the forward map then you can sample
and calculate expectations over the posterior, 1.e., ‘solve’ the

inverse problem

Statistical inference provides a unifying framework for inverse
problems



