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Electronics Group at Otago

In 1987 Millman and Grabel discarded the historical definition of ‘electronics’ as the

science and technology of the motion of charges, preferring instead the operational

definition that the primary concern of people doing electronics is information process-

ing. This makes a distinction from energy processing practiced in the rest of electrical

engineering. The act of information processing is what gets electronics practicioners

invloved in the fours ‘C’s: communication, computation, control, and components. This

practical definition seems to describe well the activities within the Electronics Group

in the Physics Department at the University of Otago, and the range of topics covered

in this technical report series.

In September 2008, research within the Electronics Group include projects on

lightweight GPS tags for birds, modelling and control of a robotic elbow, design and

deployment of an under-sea glider, analysis of networks of random resistors, electri-

cal impedance imaging, calibration of numerical models for geothermal fields using

Bayesian inference, modelling and sampling of Gaussian processes, and efficient algo-

rithms for Markov chain Monte Carlo applied to inverse problems.



A Conjugate Direction Sampler for Normal Distributions,

with a Few Computed Examples

Colin Fox

Abstract

Gaussian models and processes are common in statistics, particularly spatial statistics, being
convenient from both computational and theoretical viewpoints. Efficient algorithms for sam-
pling from Gaussian Markov random fields exploit sparseness of the precision matrix within a
Cholesky factorization, or use circulant structure to allow diagonalization by Fourier transforms.

I present an alternative, sequential, algorithm derived from the conjugate gradient (CG)
optimization algorithm. CG has the remarkable property of minimizing a quadratic form exactly
in a finite number of steps while requiring storage of only two state vectors. The conjugate
direction (CD) sampler has the analogous property generating independent (or exact) samples
after a fixed number of steps (equal to the dimension of the state space) while requiring storage
of only two state vectors, and a third auxiliary vector. Within the sampler one needs to operate
by the precision matrix but there is no need to store the matrix or factorize it. Hence the
conjugate direction sampler is useful for drawing samples in high dimensional problems where
forming the precision matrix is impractical or inconvenient.

When implemented using finite precision arithmetic the CD sampling algorithm terminates
incorrectly due to loss of conjugacy arrising from ill-conditioning of the precision matrix, or when
eigenvalues are repeated. To some degree these issues may be treated by use of a preconditioning
matrix. In a computed example the maximum sample dimension for which the CD sampling
algorithm correctly terminates is 105.
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Chapter 1

Introduction

Normal (or Gaussian) distributions are common throughout statistical modelling, being conve-
nient from both computational and theoretical viewpoints. The seminal works by Hammersley
and Clifford (1971), Clifford (1993), Besag (1974), and Geman and Geman (1984) have lead
to the special case of Gaussian Markov random fields (GMRF) becoming a basic component of
models in spatial statistics, including inverse problems (see e.g. Kaipio and Somersalo, 2005).
Not uncommonly the GMRF is defined on a state space with dimension 106 to 109, or more,
in which case general sampling algorithms can be very slow. A typical example of a high-
dimensional GMRF occurs in exploratory analyses in inverse problems, for example when the
state corresponds to parameter values in a finite element discretization of a 3-dimensional region.
Efficient GMRF samplers exploit sparseness of the precision matrix within a Cholesky factor-
ization to allow efficient sampling from the full GMRF, as well as marginal and conditional
distributions (Rue, 2001), or use circulant matrix structure that allows Fourier methods to be
used (Gneiting et al., 2005). Predictive distributions resulting from Gaussian process regression,
including machine learning, are a further source of high-dimensional Gaussian distributions.

This article introduces a new, sequential, ‘conjugate direction’ (CD) sampling algorithm
derived from the conjugate gradient (CG) optimization algorithm. CG has the remarkable
property of minimizing a quadratic form in a finite number of steps (when exact arithmetic is
used) while requiring storage of only two vectors. The CD sampler has the analogous property of
independence between output samples with more than a finite spacing (equal to the dimension
of the state space) while requiring storage of only two state vectors, and a third auxiliary vector.
Within the sampler one needs to operate by the precision matrix but there is no need to store
the matrix or factorize it. Hence the CD sampler is useful in high dimensional problems where
forming the precision matrix is impractical or inconvenient.

The CG algorithm was introduced by Hestenes and Stiefel (1952) as a means of solving the
matrix equation Ax = b, or equivalently, minimizing the associated quadratic form

φ (x) =
1

2
xTAx− bTx

where A is a symmetric positive definite (SPD) matrix. CG uses a sequence of search directions
equal to the gradient of φ projected onto the subspace conjugate to all previous directions. That
choice implies that the projection step requires storage of just the previous search direction and
not the full sequence of previous directions (cf. prop. 2.3.1), as would be required in general.
Hence the CG algorithm requires storage of just two vectors, and the ability to operate by the
matrix A. The former feature allows application to high-dimensional problems, while the latter
gives computational efficiency in those problems where operation by A can be performed much
more cheaply than by direct matrix multiplication.

The CD sampler works similarly, generating a sequence of mutually conjugate directions
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along which the conditional distribution is sampled. Since mutually conjugate vectors define
mutually independent conditional distributions of a multivariate Gaussian, a finite sequence of
conditional samples generates a sample from the target multivariate Gaussian. Hence, the CD
sampler may be viewed as a Gibbs sampler in which the sequence of sampling directions is chosen
in an optimal way to produce an exact sample, rather than the usual sequence of coordinate
directions that results in geometric convergence.

Connections between the CG algorithm and a problem in curve fitting were shown by Jen-
nings (1977), giving insight into the way that the eigenvalue structure of the matrix A affects the
convergence of the basic CG algorithm (see also Axelsson, 1994; Nocedal and Wright, 1999). In
particular, the CG algorithm terminates in the number of steps equal to the number of distinct
eigenvalues of A. Termination in as few steps as possible is desirable in optimization, but is not
desirable when implementing a sampling algorithm that is required to continue exploring all of
state space. Modifications to the basic CD sampler are given to circumvent this property.

Despite the similar background and purpose, the CD sampler is not a close relative of the
conjugate gradient Markov chain Monte Carlo (CGMCMC) introduced by Liu (2001); Liu et al.
(2000). CGMCMC is a variant of the multi-point adaptive direction sampler (ADS) (Gilks
et al., 1994) that utilizes the deterministic CG optimization algorithm to find an ‘anchor point’
for ‘snooker’ type moves, i.e., CGMCMC uses CG within the proposal step of a Metropolis-
Hastings algorithm. In contrast, the CD sampler is a stochastic adaptation of the CG algorithm,
producing a chain that is neither reversible nor (first-order) Markov. The CD sampler adapts
the finite termination property of CG for quadratic functions to give finite-time independence
property for Gaussian distributions, and utilizes the structure of search directions and conju-
gacy so that storage of just two state vectors and an auxiliary vector is required. Indeed, a
motivation for developing CD was the conviction that careful use of just two state vectors could
give dramatically more efficient sampling algorithms than the random selection from multiple
state vectors as in ADS. That lesson had been learned in the field of optimization of high-
dimensional functions and it seemed reasonable that the same principle would hold for sampling
high-dimensional probability distributions. The same motivation also lead to development of the
t-walk version of the Metropolis-Hastings MCMC algorithm, where again just two state vectors
are stored.

A possible meeting of the Metropolis-Hastings algorithm and the CD sampler is when
Metropolis-Hastings dynamics is used to perform conditional sampling within the CD algorithm
applied to non-Gaussian target distributions. Also, it seems likely that CD and the t-walk can
be combined, perhaps with CD forming a proposal distribution for the t-walk.

1.1 Efficient sampling from a Gaussian

Consider drawing a sample x ∈ R
n from the zero-mean multi-variate normal distribution

N(0, A−1) having density function

π (x) =

√

det (A)

2πn
exp

{

−1

2
xTAx

}

.

The precision matrix A ∈ Rn×n is a symmetric positive definite (SPD) matrix, as is the covari-
ance matrix A−1 (see e.g. Feller, 1966, Sec. III.6 Thm. 3).

Standard efficient samplers use the Cholesky factorization, or eigen structure, as follows:
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• The classical algorithm calculates the Cholesky factorization of the covariance matrix A−1

to give lower triangular matrix R satisfying

RRT = A−1.

Then if z ∼ N (0, In), x = Rz ∼ N
(

0, A−1
)

as desired. Here In is the n×n identity matrix.

Note that components of z may be drawn from standard normals since zi
i.i.d.∼ N (0, 1).

• Rue (2001) suggested Cholesky factorization of the precision matrix A to give lower trian-
gular matrix L satisfying

LLT = A.

Then if z ∼ N (0, In), solving z = LTx (by back-substitution) gives x ∼ N
(

0, A−1
)

.
When π is a GMRF, the Markov property implies that A is a sparse matrix, for which
computationally efficient algorithms are available.

• The eigenvectors of the covariance matrix A−1 (or precision matrix A) give coordinates
that are uncorrelated and independent. If the normalized eigenvectors u1,u2, . . . ,un satisfy

A−1ui = λiui and zi
i.i.d.∼ N (0, 1), then x =

∑n
i=1 zi

√
λiui ∼ N

(

0, A−1
)

as desired. When
the eigen decomposition is cheap to compute, e.g. via the Fourier transform for circulant
matrices, this expansion gives a feasible efficient method.

Remark 1.1.1 The validity of these algorithms follow from the classical result for linear trans-
formation of a multi-variate normal (see e.g. Feller, 1966). If z ∼ N (µ,Σ) then x = Tz ∼
N
(

Tµ, TΣTT
)

for any matrix T of full column rank. For example, correctness of the algorithm

suggested by Rue follows since A−1 =
(

LT
)

−1
L−1, and solving z = LTx is the same as setting

x = Tz where T =
(

LT
)

−1
.
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Chapter 2

Conjugate Direction Sampling
Algorithm

Properties of the (linear) CG algorithm and variants are derived in many excellent sources (see
e.g. Axelsson, 1994; Gill et al., 1981; Greenbaum, 1997; Nocedal and Wright, 1999). The following
development of the CD sampling algorithm is adapted from the constructive development of the
linear CG algorithm given by Tan (1986).

2.1 Mutually conjugate vectors (and factorizations)

Definition 2.1.1 A set of k non-zero vectors p(i), i = 0, 1, . . . , k − 1, is mutually conjugate

w.r.t.1 the SPD matrix A ∈ R
n×n (or mutually A-conjugate2) if

p(i)TAp(j) = 0 ∀i 6= j.

Remark 2.1.1 Denote p(i)TAp(i) = di. Note that di > 0 ∀i, as A is strictly positive definite.

Remark 2.1.2 Let Pk ∈ Rn×k be the matrix
[

p(0),p(1), . . . ,p(k−1)
]

, i.e. with columns being

the mutually conjugate vectors p(i), i = 0, 1, . . . , k − 1, and Dk = diag (d0, d1, . . . , dk−1) ∈ Rk×k

with di as defined in Remark 2.1.1. Then

PT
k APk = Dk. (2.1)

The condition that the right-hand side be diagonal in equation 2.1 gives an equivalent charac-
terization of non-zero vectors being mutually conjugate w.r.t. A.

Lemma 2.1.1 The elements of any set of mutually conjugate vectors are linearly independent.

Proof. Suppose that
∑

i αip
(i) = 0. Then 0 =

(
∑

i αip
(i)
)T

Ap(j) = αjdj =⇒ αj = 0.

Corollary 2.1.1 A set of n mutually conjugate vectors is complete.

Remark 2.1.3 Having a (complete) set on n mutually conjugate vectors allows sampling from

π in a straightforward way. If z ∼ N (0, In), then y =
√

D−1
n z ∼ N

(

0,D−1
n

)

, and x = Pny ∼
N
(

0, A−1
)

. This follows since PT
n APn = Dn so A−1 = PnD−1

n PT
n .

1w.r.t. is an abreviation for ‘with respect to’.
2Axelsson (1994) uses the term A-orthogonal which has merit since conjugacy is the property of orthogonality

w.r.t. the inner product (x, y) = xTAy. We use the term ‘conjugate’ since its usage is well established.
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The expression for x can be written x =
∑n−1

i=0

(

zi/
√

di

)

p(i). Since the zi are i.i.d. ∼ N (0, 1),
this shows how a sample from π may be generated using a sequence of standard normal random
numbers. It also shows that the multivariate Gaussian is transformed to independent random
variables by using a mutually conjugate basis.

The following examples show that the algorithms based on the Cholesky and eigen factor-
izations are examples of the more general notion of mutually conjugate w.r.t. A.

Example 2.1.1 (Cholesky factorization of A−1) Since RRT = A−1, RTAR = I, so the columns
of R are mutually conjugate w.r.t. A.

Example 2.1.2 (Cholesky factorization of A) Since LLT = A,
(

LT
)

−1
L−1 = A−1, so

(

LT
)

−1
=

R and so the columns of
(

LT
)

−1
are mutually conjugate w.r.t. A.

Example 2.1.3 (Eigen decomposition of A or A−1) Eigen decomposition of A gives

A = UDUT

where U is unitary (columns are normalized eigenvectors) and D is diagonal (eigenvalues on
diagonal). Then UTAU = D, so the eigenvectors are mutually conjugate w.r.t. A.

We now consider the sequential generation of samples from π in more detail.

Proposition 2.1.1 Let p(i), i = 0, 1, . . . , k − 1, be a set of k mutually conjugate vectors w.r.t.
A. A sample from the conditional distribution

π
(

x|x ∈ span
{

p(0),p(1), . . . ,p(k−1)
})

may be generated by a sequence of samples from the one-dimensional conditional distributions
in directions p(0),p(1), . . . ,p(k−1).

Proof. First consider a sample from the whole space, i.e. span
{

p(0),p(1), . . . ,p(n−1)
}

and write

x =
n−1
∑

i=0

αip
(i).

The result in Remark 1.1.1 shows that x ∼ N
(

0, A−1
)

when α ∼ N
(

0,D−1
n

)

hence αi ∼
N (0, 1/di) are independent normal. Now consider the conditional distribution along line p(k−1)

when α0, α1, . . . , αk−2 are fixed, i.e. for

π
(

x|x ∈ α0p
(0) + α1p

(1) + · · ·αk−2p
(k−2) + span

{

p(k−1)
})

.

Write x = α0p
(0) + α1p

(1) + · · ·αk−2p
(k−2) + λp(k−1). The density over λ is

π (λ) ∝ exp







−1

2

(

k−2
∑

i=0

αip
(i) + λp(k−1)

)T

A

(

k−2
∑

i=0

αip
(i) + λp(k−1)

)







= exp

{

−1

2

(

k−2
∑

i=0

α2
i di + λ2dk−1

)}

,

i.e. λ ∼ N (0, 1/dk−1) which is the same as the distribution of αk−1 in a sample from π (x).
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Thus, a sample from π (x) may be generated by a sequence of exactly n independent uni-
variable samples taken from the conditional distributions in directions p(0),p(1), . . . ,p(n−1) with
components in previous directions fixed.

2.2 The vectors q(i) = Ap(i) and A-projections

Lemma 2.2.1 If p(i), i = 0, 1, . . . , k − 1, is a set of mutually A-conjugate vectors, then q(i) =
Ap(i), i = 0, 1, . . . , k − 1 is a set of vectors mutually conjugate w.r.t. A−1.

Proof. Let Pk =
[

p(0),p(1), . . . ,p(k−1)
]

and Qk =
[

q(0),q(1), . . . ,q(k−1)
]

= APk. Then QT
k A−1Qk =

PT
k ATA−1APk = Dk and the result follows from Remark 2.1.2.

Corollary 2.2.1 For Pk and Qk as defined in the proof to Lemma 2.2.1

PT
k Qk = QT

k Pk = Dk.

Definition 2.2.1 If p(i), i = 0, 1, . . . , k−1, is a set of mutually A-conjugate vectors and Pk and
Qk are the matrices defined in the proof to Lemma 2.2.1, the A-projection onto span

{

p(0),p(1), . . . ,p(k−1)
}

is defined as

Rk = PkD
−1
k PT

k A = PkD
−1
k QT

k .

The name A-projection is justified by the following two Lemmas and Remark.

Lemma 2.2.2 If x ∈ span
{

p(0),p(1), . . . ,p(k−1)
}

then Rkx = x.

Proof. Write x = Pka for some a ∈ R
k×1. Then Rkx = PkD

−1
k QT

k Pka = Pka = x.

Lemma 2.2.3 If
{

p(0),p(1), . . . ,p(k−1),v
}

form a mutually conjugate set then Rkv = 0.

Proof. Since v is A-conjugate to
{

p(0),p(1), . . . ,p(k−1)
}

, PT
k Av = 0. The result follows from

the definition of Rk.

Remark 2.2.1 It is easy to check that R2
k = Rk and that RT

k A = ARk, i.e. is symmetric in
the inner product (x,y) = xTAy. Hence Rk is a projection in the inner product (·, ·).
Lemma 2.2.4 Let v = (In −Rk)x for any x. Then v is either zero or A-conjugate to
{

p(0),p(1), . . . ,p(k−1)
}

.

Proof. PT
k ARk = PT

k APkD
−1
k PT

k A = PT
k A hence PT

k Av = PT
k A (In −Rk)x = 0.

Lemma 2.2.5 Given a set of mutually conjugate vectors
{

p(0),p(1), . . . ,p(k−1)
}

, each vector
x has the unique decomposition

x = α0p
(0) + α1p

(1) + · · ·αk−1p
(k−1) + v

where α0, α1, . . . , αk−1 are scalars and v is either zero or A-conjugate to
{

p(0),p(1), . . . ,p(k−1)
}

.
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Proof. Since Rkx ∈ span
{

p(0),p(1), . . . ,p(k−1)
}

we can write Rkx = α0p
(0)+α1p

(1)+· · ·αk−1p
(k−1).

Define v = (In −Rk)x which, by Lemma 2.2.4, is either zero or conjugate to
{

p(0),p(1), . . . ,p(k−1)
}

.
This gives a factorization of the desired type. Uniqueness of the factorization follows from
Lemma 2.1.1.

Remark 2.2.2 We will use the notation in Lemma 2.2.5 for factorizations in the state variable,
x. It will be convenient to factorize the auxiliary vectors using the mutually A−1-conjugate set
of vectors

{

q(0),q(1), . . . ,q(k−1)
}

defined in Lemma 2.2.1, and write that factorization as

b = α0q
(0) + α1q

(1) + · · ·αk−1q
(k−1) + w.

Lemma 2.2.6 vTq(i) = 0, i = 0, 1, . . . , k − 1, and wTp(i) = 0, i = 0, 1, . . . , k − 1, where v and
w are defined in the decompositions in Lemma 2.2.5 and Remark 2.2.2, respectively.

Proof. Since w is A−1-conjugate to
{

q(0),q(1), . . . ,q(k−1)
}

, 0 = QT
k A−1w = PT

k AA−1w = PT
k w

establishes the result for w. The result for v holds similarly.

2.3 Auxiliary vector and quadratic form

Definition 2.3.1 Given a partial sample with decomposition x(k) = α0p
(0)+α1p

(1)+· · ·αk−1p
(k−1)+

v, an auxiliary vector is any vector with decomposition b(k) = α0q
(0) +α1q

(1) + · · ·αk−1q
(k−1)+

w, i.e. satisfying
Skb

(k) = ARkx
(k),

where Sk is the A−1-projection onto span
{

q(0),q(1), . . . ,q(k−1)
}

and Rk is the A-projection in
Definition 2.2.1.

Remark 2.3.1 Sk = RT
k . This follows directly from the observation that Sk = QkD

−1
k QT

k A =
APkD

−1
k PT

k and the symmetry of both Dk and A.

Proposition 2.3.1 Given x(k) and auxiliary vector b(k) in Definition 2.3.1, x(k) minimizes the
quadratic form

φk (x) =
1

2
xTAx− b(k)Tx

in the affine subspace v + span
{

p(0),p(1), . . . ,p(k−1)
}

.

Proof. The minimum occurs when for j = 0, 1, . . . , k − 1

0 =
∂φk

(

v +
∑k−1

i=0 aip
(i)
)

∂aj

=
∂

∂aj





1

2

(

v +

k−1
∑

i=0

aip
(i)

)T

A

(

v +

k−1
∑

i=0

aip
(i)

)

−
(

w +

k−1
∑

i=0

αiq
(i)

)T(

v +

k−1
∑

i=0

aip
(i)

)





=
∂

∂aj

(

1

2

k−1
∑

i=0

a2
i di −

k−1
∑

i=0

αiaidi −wTv

)

= ajdj − αjdj .

Hence the minimum occurs for aj = αj as desired.
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In the case when x(0) and b(0) are zero, sequential calculation of vectors x(k) and b(k) as in
Definition 2.3.1 is straightforward. However, setting x(0) = b(0) = 0 is not a feasible initialization
of the CD sampler. Hence we must consider more general initial values. The following Lemma
shows how vectors x(k) and b(k) may be sequentially generated from arbitrary initial values.

Lemma 2.3.1 Given the set of k mutually conjugate vectors p(i), i = 0, 1, . . . , n − 1, con-
stants αi, i = 0, 1, . . . , n − 1, and initial vectors x(0) and b(0), a sequence of vectors with the
decompositions in Lemma 2.2.5 and Remark 2.2.2 may be generated sequentially by

x(k) = x(k−1) +

(

αk−1 −
p(k−1)TAx(k−1)

dk−1

)

p(k−1) (2.2)

and

b(k) = b(k−1) +

(

αk−1 −
p(k−1)Tb(k−1)

dk−1

)

Ap(k−1) (2.3)

for k = 1, 2, . . . , n.

Proof. This result may be proved by induction on k. Suppose x(k−1) and b(k−1) are written
according to the decompositions, i.e.,

x(k−1) =

k−2
∑

i=0

αip
(i) + v(k−1)

and

b(k−1) =
k−2
∑

i=0

αiq
(i) + w(k−1)

where PT
k−1Av(k−1) = 0 and QT

k−1A
−1w(k−1) = 0.

We may write x(k) given by Equation 2.2 in this form as x(k) =
∑k−1

i=0 αip
(i) + v(k), where

v(k) = v(k−1) − p(k−1)TAx(k−1)

dk−1
p(k−1).

Hence PT
k−1Av(k) = 0 since PT

k−1Av(k−1) = 0 and PT
k−1Ap(k−1) = 0. Further, p(k−1)TAv(k) =

p(k−1)TA
(

v(k−1) − p
(k−1)TAx

(k−1)

dk−1
p(k−1)

)

= 0 by construction. Composing these two results

gives PT
k Av(k) = 0, and hence x(k) is written as the factorization in Lemma 2.2.5 as desired.

The result for b(k) holds similarly.

Remark 2.3.2 Since the x(k) and b(k) generated in Lemma 2.3.1 share a common set of αi in
their respective factorizations, b(k) is an auxiliary vector for x(k) as in Definition 2.3.1.

The sequential updating of vectors in Lemma 2.3.1 allows sequential sampling from the
conditional distributions of the target Gaussian density along a sequence of mutually conjugate
directions. In particular, the conditional density

π
(

x|x ∈ x(k−1) + span
{

p(k−1)
})

13



is a one dimensional Gaussian with mean −p
(k−1)TAx

(k−1)

dk−1
and variance 1/dk−1. Hence if z ∼

N (0, 1) and αk−1 = z/
√

dk−1 then x(k) is distributed as this conditional density. A sequence of
conditional samples will give a sample from

π
(

x|x ∈ span
{

p(0),p(1), . . . ,p(k−1)
})

as in Proposition 2.1.1.

2.4 Generating mutually conjugate vectors

Given any set of linearly independent vectors
{

r(k)
}

k=0,1,...,n−1
, we can form a mutually conjugate

set
{

p(k)
}

k=0,1,...,n−1
(spanning the same space) using the following modified Gram-Schmidt

process. First set p(0) = r(0) and then define

p(k) = r(k) −
k−1
∑

i=0

r(k)TAp(i)

di
p(i) for k = 1, 2, . . . , n− 1. (2.4)

It is easy to check that the set
{

p(k)
}

k=0,1,...,n−1
has the right properties. This process for

generating mutually conjugate vectors requires storage of all previous vectors to evaluate the
summation. However, if the set

{

r(k)
}

k=0,1,...,n−1
is chosen carefully, most of the terms in the

summation evaluate to zero, making it necessary to store fewer vectors. Moreover, the process
may be performed sequentially with storage of just two state vectors at each stage, hence giving
a sampling algorithm that produces a second-order Markov chain.

An appropriate choice is the negative gradient of the associated quadratic form at the current
point x(k), i.e.

r(k) = −∇φk

(

x(k)
)

= b(k) −Ax(k). (2.5)

The term on the right-hand side, and hence r(k), is the residual of the linear equation at the
point x(k).

Lemma 2.4.1 The residual vector r(k) is orthogonal to the space span
{

p(0),p(1), . . . ,p(k−1)
}

.

Proof. By Proposition 2.3.1, x(k) is the point in the space v + span
{

p(0),p(1), . . . ,p(k−1)
}

at which φk is minimized. Hence the projection of the gradient r(k) = −∇φk

(

x(k)
)

onto

span
{

p(0),p(1), . . . ,p(k−1)
}

is zero, i.e. r(k) is orthogonal to the space.

Lemma 2.4.2 r(i)Tr(j) = 0 for all i 6= j.

Proof. By construction, span
{

p(0),p(1), . . . ,p(k−1)
}

is the same space as span
{

r(0), r(1), . . . , r(k−1)
}

,

hence from Lemma 2.4.1, r(k) is orthogonal to r(j) for all j < k. The result follows from sym-
metry.

Proposition 2.4.1 When r(k) is calculated as Equation 2.5, and x(k) and b(k) are updated as
in Lemma 2.3.1 then all the terms in the summation in Equation 2.4 are zero, except for the
term i = k − 1.

14



Proof.

r(i+1) = b(i+1) −Ax(i+1)

= b(i) +

(

αi −
p(i)Tb(i)

di

)

Ap(i) −A

(

x(i) +

(

αi −
p(i)TAx(i)

di

)

p(i)

)

= r(i) − p(i)Tb(i)

di
Ap(i) +

p(i)TAx(i)

di
Ap(i)

= r(i) − p(i)Tr(i)

di

Ap(i).

In particular Ap(i) =
(

r(i+1) − r(i)
) −di

p(i)Tr(i)
, i.e. consecutive residuals differ by a scalar multiple

of Ap(i). Hence the summation is

k−1
∑

i=0

r(k)TAp(i)

di

p(i) = −
k−1
∑

i=0

r(k)T
(

r(i+1) − r(i)
)

p(i)Tr(i)
p(i) = − r(k)Tr(k)

p(k−1)Tr(k−1)
p(k−1).

2.5 Sequential algorithm

Proposition 2.4.1 shows that just the current state and the previous sampling direction is required
to sequentially calculate the set of mutually conjugate vectors. The resulting sequential sampling
algorithm is given in Algorithm 1.

Since a scaling of the previous sampling direction p(k−1) does not alter the algorithm, storing
the current state and the previous sampling direction is equivalent to storing the current and the
previous state (with the sampling direction being the difference of these states). Hence we could
rewrite the algorithm to require storage of two states, explicitly showing that the algorithm
produces a chain that is second-order Markov.

2.6 Distribution of the auxiliary vector

Lemma 2.6.1 b(n) ∼ N (0, A), i.e. with A as covariance matrix rather than precision matrix.

Proof. Since Sn = Rn = In, from Definition 2.3.1 we see that b(n) = Ax(n). The result follows
from the transformation of multi-variate normals quoted in Remark 1.1.1.

The interesting consequence is that a sample from each of N(0, A−1) and N(0, A) is generated
by the CD sampler. Thus, which ever of the covariance or precision matrix is computationally
cheaper to operate by, may be used in the algorithm. A sample from the desired distribution
is then produced as x(n) or b(n). Note, however, that Ax(n) = b(n) so these samples are not
independent.
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x = cdsample(A)

initialize x(0) and b(0) (with Ax(0) 6= b(0))

r(0) ← b(0) −Ax(0)

p(0) ← r(0)

for k = 1 to n do

dk−1 ← p(k−1)TAp(k−1)

draw zk−1 ∼ N (0, 1)

αk−1 ← zk−1/
√

dk−1

x(k) ← x(k−1) +

(

αk−1 −
p(k−1)TAx(k−1)

dk−1

)

p(k−1)

b(k) ← b(k−1) +

(

αk−1 −
p(k−1)Tb(k−1)

dk−1

)

Ap(k−1)

r(k) ← b(k) −Ax(k)

p(k) ← r(k) +
r(k)Tr(k)

p(k−1)Tr(k−1)
p(k−1)

x← x(n)

Algorithm 1: Preliminary implementation of the conjugate direction sampling algorithm using
direct implementation of sequential calculation formulas. Here n is the dimension of the state
vector x. If the algorithm completes the n iterations, i.e. dk−1 6= 0,∀k = 1, 2, . . . , n, the
algorithm returns x ∼ N

(

0, A−1
)

.

2.7 Practical implementation

When the CG algorithm is applied to quadratic objective functions, it is possible to use just one
matrix operation and two vector products per iteration (see, e.g. Tan (1986)). Similarly, the
calculations in the preliminary CD algorithm may be restructured to reduce the computation
required per iteration.

Explicitly evaluating the vector q(k−1) = Ap(k−1) and some required vector products allows
simplification of the sequential evaluation of b(k) and x(k). The result in Proposition 2.4.1 for
the difference between consecutive residuals leads to a simplified calculation of r(k). The same
result along with Lemma 2.4.2 also leads to a simplified computation for computing the new
sampling direction p(k).

The resulting efficient CD sampler algorithm is presented in Algorithm 2. Cost per iteration
is reduced to one matrix operation and four vector products per iteration.

The algorithm requires that x and b are initialized so that Ax 6= b. (If Ax = b then
p = q = 0 and so d = 0 and the algorithm cannot complete even a single iteration.) A simple
way to do this is to draw b(0) ∼ N (0, In) and initialize x = 0 and b = b(0). Then, with
probability 1, Ax 6= b and the algorithm is correctly initialized. If more than one sample from
the target Gaussian is required, a simple strategy for re-initializing after n iterations is to set
b = b(0), with no change to x.
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x,b = cdsample(A)

initialize x and b (with Ax 6= b)

r← b−Ax

p← r

for k = 1 to n do

q← Ap

d← qTp

e← qTx/d

f ← pTb/d

draw z ∼ N (0, 1)

α← z/
√

d

x← x + (α− e)p

b← b + (α− f)q

r← r− (f − e)q

p← r− rTq

d
p

Algorithm 2: Implementation of the basic conjugate direction sampler with reduced computa-
tional cost. If the algorithm terminates without error, i.e. d 6= 0 in each iteration, it returns
x ∼ N

(

0, A−1
)

and b ∼ N (0, A). Indexes have been left off to also give an algorithm requiring
minimal storage.
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Chapter 3

Repeated eigenvalues and
preconditioning

As with the CG algorithm, the state vector x(k) in the CD algorithm is given by x(0) plus an
element of the Krylov subspace span

{

r(0), Ar(0), A2r(0), . . . , Akr(0)
}

(see e.g. Axelsson, 1994).
When the matrix A has repeated eigenvalues, i.e. A is degenerate, the Krylov subspaces have
dimension less than n, implying that the algorithm as presented will not terminate correctly.

The dimension of the Krylov subspaces may be bounded as follows. Label the eigenvalues

of A by λ1, λ2, . . . , λm where m ≤ n. Let r
(0)
i be the projection of r(0) onto the subspace

of eigenvectors associated with λi. Then Akr(0) =
∑m

i=1 λk
i r

(0)
i . Since the RHS is a linear

combination of m vectors, the Krylov subspace is made up of linear combinations of m vectors
and hence has dimension at most m.

Since the sampling vectors p(k) are elements of the Krylov subspaces, Lemma 2.1.1 implies
that p(i) = 0,∀i > m. Hence if eigenvalues of A are repeated, so m < n, we have p(k−1) = 0

for some k ≤ n, hence dk−1 = 0 for some k ≤ n. With exact arithmetic the algorithm will then
attempt a divide by zero, generating an error. In the presence of numerical roundoff, dk−1 may
be small, but not exactly zero, causing a large erroneous calculation when dividing by dk−1.

A simple example of this problem occurs when sampling from the simplest multivariate
Gaussian N(0, In). Then A = In, and inspection of Algorithm 1 shows that r(0) = b(0) − x(0),
d0 = ‖p(0)‖2, giving r(1) = 0. Then p(1) = 0 and the algorithm fails as outlined above. Hence,
a feature of the algorithm as presented is that the Gaussian which is the simplest to sample by
existing methods presents a difficulty to the CD sampler. On the other hand, Gaussian densities
that arise in ‘natural’ settings are unlikely to have any particular eigenvalue structure, and may
be sampled using the CD sampler without modification.

The CG algorithm is also known to be optimal, in a certain sense, for an equivalent polyno-
mial fitting problem (Jennings, 1977; Nocedal and Wright, 1999). This connection shows that
convergence of the CG algorithm depends not only on the number of distinct eigenvalues, but
also on the distribution of eigenvalues. In particular, CG converges more rapidly when eigenval-
ues are clustered, and can give good approximate solutions in a reduced number of iterations,
thereby getting close to the performance for repeated eigenvalues. Conversely, convergence is
slowest when eigenvalues are uniformly distributed. While convergence in fewer than n steps is
desirable for an optimization algorithm, it is undesirable in a sampling algorithm. Therefore,
performance of the sampling algorithm is best for matrices A with uniformly spaced, distinct
eigenvalues.

For CG algorithms, a standard method for accelerating convergence is to ‘precondition’ the
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linear system, or quadratic form, by transforming to a system with more clustered eigenvalues.
Similarly, performance of the CD sampler may be improved by transforming the precision matrix
A as

Ã = UT AU

so that the eigenvalues of Ã are uniformly distributed, and sample instead from N(0, Ã−1).
Then if z ∼ N(0, Ã−1), x = Uz ∼ N(0, A−1) as desired. The only other requirement for U
is that it is cheap to operate by. Similarly, we also call transformation by U preconditioning,
despite its effect on eigenvalues being almost the opposite of the preconditioning matrices used
in optimization.

3.1 A preconditioning matrix U

In the examples that follow in sections 4.1 and 4.2 a preconditioning matrix was used that is one
on the diagonal, i.i.d. uniform random variables in the entries just above the diagonal, and is
otherwise zero. Admittedly this was the first preconditioning matrix I tried and since it worked
no others were tested.

Clearly there are many more possible preconditioning matrices. Indeed the eigenvalue struc-
ture of UT U for this choice of U is close to the eigenvalue structure of the discrete Laplacian,
which has a sin2 functional form. Since this has flat sections for small and large eigenvalues,
this preconditioner is only useful for problems with thousands of variables, or fewer. The devel-
opment of ’best’ preconditioning matrices therefore remains quite open.
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Chapter 4

Numerical Examples

4.1 Random tridiagonal SPD

In this example the precision matrix is derived from a n×n matrix that has ones on the diagonal,
uniform random variables on the super-diagonal, and is otherwise zero. The case for n = 10
looks like (with zeros marked as a dot)

U =

































1 U1 · · · · · · · ·
· 1 U2 · · · · · · ·
· · 1 U3 · · · · · ·
· · · 1 U4 · · · · ·
· · · · 1 U5 · · · ·
· · · · · 1 U6 · · ·
· · · · · · 1 U7 · ·
· · · · · · · 1 U8 ·
· · · · · · · · 1 U9

· · · · · · · · · 1

































where Ui
i.i.d.∼ U(0, 1). The precision matrix is calculated as A = UTU . In this example we use

the following instance of this process

A =

































1 0.9501 0 0 0 0 0 0 0 0
0.9501 1.9027 0.2311 0 0 0 0 0 0 0

0 0.2311 1.0534 0.6068 0 0 0 0 0 0
0 0 0.6068 1.3683 0.4860 0 0 0 0 0
0 0 0 0.4860 1.2362 0.8913 0 0 0 0
0 0 0 0 0.8913 1.7944 0.7621 0 0 0
0 0 0 0 0 0.7621 1.5808 0.4565 0 0
0 0 0 0 0 0 0.4565 1.2084 0.0185 0
0 0 0 0 0 0 0 0.0185 1.0003 0.8214
0 0 0 0 0 0 0 0 0.8214 1.6747

































The eigenvalues of A are plotted in Figure 4.1. Note that all eigenvalues are distinct, hence the
naive CD sampler will not have problems of premature termination.

The exact covariance matrix is (rounded to 4 decimal places)
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Figure 4.1. Eigenvalues of the precision matrix A plotted against
index, in ascending order.

A−1 =

































1.9786 −1.0300 0.3454 −0.2073 0.1523 −0.0982 0.0531 −0.0201 0.0006 −0.0003
−1.0300 1.0840 −0.3635 0.2181 −0.1603 0.1034 −0.0560 0.0211 −0.0007 0.0003

0.3454 −0.3635 1.5728 −0.9439 0.6936 −0.4474 0.2421 −0.0915 0.0028 −0.0014
−0.2073 0.2181 −0.9439 1.5555 −1.1430 0.7372 −0.3989 0.1508 −0.0047 0.0023

0.1523 −0.1603 0.6936 −1.1430 2.3520 −1.5169 0.8209 −0.3102 0.0096 −0.0047
−0.0982 0.1034 −0.4474 0.7372 −1.5169 1.7019 −0.9210 0.3481 −0.0108 0.0053

0.0531 −0.0560 0.2421 −0.3989 0.8209 −0.9210 1.2084 −0.4567 0.0141 −0.0069
−0.0201 0.0211 −0.0915 0.1508 −0.3102 0.3481 −0.4567 1.0006 −0.0310 0.0152

0.0006 −0.0007 0.0028 −0.0047 0.0096 −0.0108 0.0141 −0.0310 1.6747 −0.8214
−0.0003 0.0003 −0.0014 0.0023 −0.0047 0.0053 −0.0069 0.0152 −0.8214 1.0000

































The CD sampler with was used to generate 1× 106 samples from N(0, A−1), and the following
sample covariance was calculated
Â−1 =

































1.9767 −1.0307 0.3472 −0.2071 0.1495 −0.0962 0.0527 −0.0183 0.0026 −0.0009
−1.0300 1.0857 −0.3640 0.2178 −0.1593 0.1016 −0.0544 0.0205 −0.0008 0.0003

0.3472 −0.3640 1.5750 −0.9455 0.6965 −0.4484 0.2414 −0.0900 0.0029 −0.0010
−0.2071 0.2178 −0.9455 1.5550 −1.1455 0.7386 −0.3975 0.1488 −0.0065 0.0038

0.1495 −0.1593 0.6965 −1.1455 2.3564 −1.5192 0.8203 −0.3103 0.0112 −0.0059
−0.0962 0.1016 −0.4484 0.7386 −1.5192 1.7027 −0.9221 0.3488 −0.0117 0.0061

0.0527 −0.0544 0.2414 −0.3975 0.8203 −0.9221 1.2074 −0.4557 0.0158 −0.0087
−0.0183 0.0205 −0.0900 0.1488 −0.3103 0.3488 −0.4557 1.0005 −0.0348 0.0167

0.0026 −0.0008 0.0029 −0.0065 0.0112 −0.0117 0.0158 −0.0348 1.6744 −0.8214
−0.0009 0.0003 −0.0010 0.0038 −0.0059 0.0061 −0.0087 0.0167 −0.8214 1.0001

































.

The close agreement provides a ‘sanity check’ that the CD sampler is indeed producing samples
from the correct distribution.

22



4.2 Identity Covariance

As noted in section 3, the CD sampler fails to complete correctly when the precision matrix, or
covariance matrix equals the n × n identity matrix. In that case preconditioning is necessary.
When n = 10, the matrix U of the previous section is a suitable preconditioning matrix. Given
samples from N(0, (UTU)−1)) as in the previous section, applying the matrix U gives samples
from N(0, In).

4.3 An empirical upper bound on n

The results in section 2 show that the CD sampling algorithm 2 will generate samples from
π when the (preconsditioned) covariance matrix has distinct eigenvalues, and computation is
performed exactly.

However, it is well known that practical computation performed with finite precision causes
Krylov-space methods such as CG or CD to eventually lose conjugacy of (search) sampling direc-
tions with consequent failure of the algorithm. The problem becomes worse with increasing n and
increasing condition number of A since then the sequence of vectors

{

r(0), Ar(0), A2r(0), . . . , Akr(0)
}

become close to parallel for large k and hence are indistinguishable from linearly dependent vec-
tors when computing to finite precision.

In that context, it is interesting to know what size of problem n one might realistically expect
to successfully sample using the CD sampling algorithm. To find an effective upper bound for
the sample dimension n, algorithm 2 was implemented1 in MatLab (hence using IEEE double
precision arithmetic) and run on a sequence of problems with increasing n. We chose a problem
with a good, though not ideal, eigenvalue structure and so the bound we establish is probably
optimistic in general.

The test problem uses a Gaussian process on n points equally spaced on the interval [0, 1]
with exponential covariance function. Rather than forming the dense covariance matrix, an
equivalent formulation based on a finite element method discretization of a suitable variational
form was used2. Specifically, we used linear elements on an equi-partition of [0, 1] to form the
discrete Hessian A of the quadratic form

I(u) =

∫ 1

0

(

r

4c

(

du

dx

)2

+
1

4rc
u2

)

dx +
u(0)2

4c
+

u(1)2

4c

where c = 1 sets the covariance and r = 0.1 sets the length scale3. The covariance function is
exp {10x}.

The distribution of eigen-values of A for n = 1000 is shown in Figure 4.2. This sin2 shape is
determined by the discrete Laplacian, for all n, while the maximum eigenvalue scales as n.

1The example presented here was coded by Al Parker, and included several sophisticated diagnostics for loss
of conjugacy and other informative diagnostics. We will report on that work elsewhere.

2This formulation is based on Hilbert space methods for boundary value problems to show equivalence be-
tween locally-linear Gaussian processes and the definition using covariance functions. Finite element method
discretizations provide usefully sparse representations of the precision matrix. The details of this formulation will
be reported elsewhere.

3These can be functions of x.
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Figure 4.2. Eigenvalues of the precision matrix A plotted against
index, in ascending order, for n = 1000.

For n much greater than 105 the algorithm fails to terminate properly, hence n = 105 sets an
effective upper bound. A sample from N(0, A−1 with n = 105 is shown in Figure 4.3 generated
using each of the CD sampler and using Cholesky factoring of A.

Figure 4.3. Two samples from N(0, A) with n = 105.

In this case A is tridiagonal. Hence the Cholesky factor has O(n) non-zero elements, can be
computed in O(n) operations, and allows samples to be generated in O(n) operations. This is
substantially cheaper than the O(n2) operations required for generating a sample using the CD
algorithm in this example. Also O(n) though faster than the method using Cholesky factoring
is an algorithm based on a factorization of A in terms of local stiffness matrices.

4.4 A concluding note

We have successfully sampled problems with n ≥ 106 using a block Gibbs sampler that uses the
CD sampler to perform block-wise sampling. We expect that other modifications of the basic
CD algorithm presented here will eventually lead to efficient algorithms that may be used for
arbitrary problem sizes.
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