
ISSN 1172-496X (Print)
ISSN 1172-4234 (Online)

TECHNICAL REPORTS from the ELECTRONICS GROUP
at the UNIVERSITY of OTAGO

SympyTeX: Embedding symbolic computation into LaTeX documents

by

Timothy C.A. Molteno

ELECTRONICS TECHNICAL
REPORT No. 2014-1

UNIVERSITY of OTAGO
DUNEDIN, NEW ZEALAND

Online version has
URL: http://www.physics.otago.ac.nz/reports/electronics/ETR2014-1.pdf

E-mail: tim@physics.otago.ac.nz
Address: Physics Department, University of Otago, P.O. Box 56, Dunedin, New Zealand

Electronics Group at Otago

In 1987 Millman and Grabel discarded the historical definition of ‘electronics’ as the science
and technology of the motion of charges, preferring instead the operational definition that the
primary concern of people doing electronics is information processing. This makes a distinction
from energy processing practiced in the rest of electrical engineering. The act of information
processing is what gets electronics practicioners invloved in the fours ‘C’s: communication,
computation, control, and components. This practical definition seems to describe well the
activities within the Electronics Group in the Physics Department at the University of Otago,
and the range of topics covered in this technical report series.

In September 2013, research within the Electronics Group include projects applying inference
algorithms to embedded sensors, lightweight GPS tags for birds, modelling and control of a
robotic elbow, design and deployment of an under-sea glider, analysis of networks of random re-
sistors, electrical impedance imaging, calibration of numerical models for geothermal fields us-
ing Bayesian inference, modelling and sampling of Gaussian processes, and efficient algorithms
for Markov chain Monte Carlo applied to inverse problems.

Citing this Report

This report should be cited as:

Timothy C.A. Molteno, “SympyTeX: Embedding symbolic computation into LaTeX
documents”, Electronics Technical Reports No. 2014-1, ISSN 1172-496X, May 2014.

Alternatively, using BibTeX, as:

@techreport{etr2014-1,
title={{SympyTeX: Embedding symbolic computation into LaTeX documents}},
author={Timothy C.A. Molteno},
series={Technical Reports from the Electronics Group at the University

of Otago},
institution={{University of Otago}},
issn={1172-496X (Print) 1172-4234 (Online)},
url={http://www.physics.otago.ac.nz/reports/electronics/ETR2014-1.pdf}
number={2014-1},
date={May 2014} }

SympyTeX: Embedding symbolic computation into
LaTeX documents

Timothy C.A. Molteno

Abstract

SympyTeX is open-source software that allows you to embed symbolic calculations and
their results into LaTeX documents. SympyTeX uses sympy, the symbolic python en-
gine (http://www.sympy.org), to manipulate symbolic expressions. Using SympyTeX,
sympy code can be embedded into your document, either hidden from view, or as part
of the document, and sympy expressions can be rendered into LaTeX expressions and
included in your document output.

1

Acknowledgment

SympyTeX builds on a lot of work by others; in particular the work of Dan Drake
ddrake@member.ams.org who created the sagetex package on which SympyTeX is
based. I am grateful to Alexander Steppke who pointed out how SympyTeX could
be used to plot with the PGF/TikZ, and provided the example that I include in this
document.

2

Contents

1 SympyTeX by example 7

1.0.1 A first example . 7

1.1 The Zhukovsky airfoil . 9

2 Plotting and Graphics 11

2.1 Plotting with the sympy.plotting module . 11

2.2 Plotting with Matplotlib . 12

2.2.1 A more sophisticated plot . 13

2.2.2 3D plotting . 14

2.3 Plotting with PGF/TikZ . 16

2.3.1 Document Preamble . 16

Appendix

A SympyTeX Reference 21

A.1 \sympy command . 21

A.1.1 Automatically breaking lines in long equations 21

A.2 \sympyplain command . 21

A.3 \sympyplot command . 22

A.4 sympyblock environtment . 22

A.5 sympysilent environment . 23

B Installing SympyTeX 25

B.0.1 Important! Setting up Your LaTeX environment 25

3

C Making SympyTeX easy to use 27

C.1 Using a Makefile . 27

C.2 Configuring Kile to use SympyTeX . 28

C.2.1 Important! Cleaning up . 29

C.2.2 Setting up QuickBuild . 30

4

List of Figures

1.1 Parametric plot of an airfoil with µx = 0.1, µy = 0.05. 10

2.1 A parametric plot generated by the sympy.plotting module 12

2.2 A 3D parametric plot using matplotlib and asymptote. 15

5

6

Chapter 1

SympyTeX by example

The SympyTeX package allows you to embed symbolic calculations and their results
(including plots) into LaTeX documents. SympyTeX uses sympy, the symbolic python
engine (http://www.sympy.org) to manipulate symbolic expressions. SympyTeX is
not limited to sympy – it allows any python code to be embedded into your document
– and can incorporate maptplotlib plots, and other python computations into your
document.

Using SympyTeX, code is embedded into your document, either hidden from view,
or included in the document output. In addition symbolic expressions can be automat-
ically converted into LaTeX expressions and included in your document output.

1.0.1 A first example

The integral
∫ 1

−1

√
1− x2dx evaluates to π. The code below uses sympy to evaluate

this integral and incorporate the output into this document.

Using sympy within your LaTeX document is as easy as

$\ sympy{2 * sympy.integrate(sympy.sqrt(1-x**2), (x, -1, 1))}$.

Using sympy within your LaTeX document is as easy as π.

Using the package

The document preamble must tell LaTeX that you’re using the sympytex package.
SympyTeX also depends on the amsmath package, so the following lines should be
added to the document preamble1.

\usepackage{sympytex}

\usepackage{amsmath}

1See Section B for installation instructions.

7

http://www.sympy.org

Embedding sympy code

You can use the sympysilent environment to execute commands. These can define
variables that remain in scope. These variables can be used later in your document.
For example, the following defines two variables, x and e, and places a series expansion
of e into the document.

\begin{sympysilent}

import sympy

x = sympy.Symbol(’x’)

e = sympy.cos(x)

\end{sympysilent}

The series expansion of $\ sympy{e

}$ is

\[\sympy{e} \approx

\sympy{e.series(x, 0, 3)} \]

The series expansion of cos (x) is

cos (x) ≈ 1− x2/2 +O
(
x3
)

You can perform integration, as in the example below. Note that the previously
defined variables, x and e are still valid and so need not be redefined.

\begin{sympysilent}

h = sympy.integrate (1+x,x)

\end{sympysilent}

The variable h, how can be

called using {\verb \sympy{h}

}, and you will

get $h = \sympy{h}$. Similarly ,

the integral of

$1+x^4$ is $\ sympy{sympy.

integrate (1+x**4,x)}$.

The variable h, how can be called using
\sympy{h}, and you will get h = x2/2+x.
Similarly, the integral of 1+x4 is x5/5+x.

Citing SympyTeX

If you use SympyTeX, I would be grateful if you could cite SympyTeX. The best way
to do this is to cite this document [4].

@techreport{sympytex,

title={{SympyTeX: Embedding symbolic computation into LaTeX documents}},

author={T.C.A. Molteno},

series={Electronics Technical Report},

number={2014-1}

year=2014

}

8

1.1 The Zhukovsky airfoil

In aerodynamics, the Zhukovsky transform [3] is used to solve for the two-dimensional
potential flow around a class of airfoils known as Zhukovsky airfoils. The transform is

z = ζ +
1

ζ

A Zhukovsky airfoil is generated in the z-plane by applying the Zhukovsky transform
to a circle in the ζ plane.

The coordinates of the centre of the circle are variables, and varying them modifies
the shape of the resulting airfoil. The circle encloses the point ζ = 1 (where the
derivative is zero) and intersects the point ζ = 1.

This can be achieved for any allowable centre position µx + iµy by varying the
radius of the circle.

\begin{sympysilent}

from sympy import Symbol , I, exp , sqrt

mu_x = Symbol(’mu_x’, real=True)

mu_y = Symbol(’mu_y’, real=True)

theta = Symbol(’theta ’, real=True)

\end{sympysilent}

A circle (parametrized by $\theta $) centered at

point $\mu = \mu_x + i \mu_y$, and intersecting the point $(1,0)$ in

the

complex plane is:

\begin{sympysilent}

mu = mu_x + I*mu_y

r = sqrt ((1.0 - mu_x)**2 + mu_y**2)

zeta = mu + r*exp(I * theta)

z = (zeta + 1.0 / zeta)

\end{sympysilent}

\[\zeta = \sympy{zeta} \]

The parametrized Zhukovsky transformation of the circle is then

\[z = \sympy{z}. \]

A circle (parametrized by θ) centered at point µ = µx + iµy, and intersecting the
point (1, 0) in the complex plane is:

ζ = µx + iµy +
√
µ2
y + (−µx + 1.0)2eiθ

The parametrized Zhukovsky transformation of the circle is then

z = µx + iµy +
√
µ2
y + (−µx + 1.0)2eiθ +

1.0

µx + iµy +
√
µ2
y + (−µx + 1.0)2eiθ

.

We can plot this with the following sympy code:

9

\begin{sympysilent}

from sympy.plotting import plot_parametric

from sympy import re , im , pi

z = z.subs ([(mu_x, 0.1), (mu_y, 0.05)])

p = plot_parametric(re(z), im(z), (theta , -pi, pi), autoscale=True ,

show=False)

p.aspect_ratio = 1.0

\end{sympysilent}

The airfoil with $\mu_x=0.1, \mu_y=0.05$, looks like:

\begin{figure}

\sympyplot[width =\ linewidth]{p}

\caption{Parametric plot of an airfoil with $\mu_x=0.1, \mu_y=0.05$.}

\end{figure}

The airfoil with µx = 0.1, µy = 0.05, looks like:

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Figure 1.1. Parametric plot of an airfoil with µx =
0.1, µy = 0.05.

10

Chapter 2

Plotting and Graphics

SympyTeX can include graphics in your document. There are three ways to do this.
The first, described in Section 2.1 describes how to incorporate plots generated directly
by sympy. The second, described in Section 2.2 describes how to use matplotlib [2].
The third, described in Section 2.3, describes how to incorporate plots generated by
the pgfplots package.

System setup

Plotting requires some python modules to be installed on your system. On Debian-
based operating systems, these can be installed using the following commands.

sudo aptitude install python -pyglet python -matplotlib

The dependency on python-pyglet is not required for more recent versions of sympy.

2.1 Plotting with the sympy.plotting module

Sympy includes plotting functionality in the sympy.plotting module. Plotting works
using the sympyplot command. This takes a sympy plot object as a parameter. The
example below creates a plot object called p, and then plots that object inside a figure
environment.

11

\begin{sympysilent}

from sympy import symbols , cos , sin

from sympy.plotting import (plot , plot_parametric)

u = symbols(’u’)

p = plot_parametric(cos(u), sin(u), (u, -5, 5), show=False)

\end{sympysilent}

To include the plot into your document , you can create a figure

environment as follows

\begin{figure}

\sympyplot[width =\ linewidth]{p}

\caption{A parametric plot generated by the sympy.plotting module}

\end{figure}

To include the plot into your document, you can create a figure environment as follows

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 2.1. A parametric plot generated by the
sympy.plotting module

2.2 Plotting with Matplotlib

Matplotlib [2] is a powerful plotting and graphics library. Matplotlib plotting works
using the sympyplot command. This can take a matplotlib figure as a parameter. The
example below does not use the sympy module at all.

12

\begin{sympysilent}

import matplotlib

import matplotlib.pyplot as plt

plt.matplotlib.rc(’text ’, usetex = True)

import pylab

from numpy import sin , cos

fig = plt.figure ()

ax = fig.add_subplot (111)

t = pylab.linspace (0 ,10 ,400)

ax.plot(t, sin (3*t), ’-’,

t, sin (0.3*t**2), ’--’,

t, cos(t), ’-.’)

ax.legend ((r’$A^{\ omega}$’, r’$A^{2\ omega}$’, r’$A^{3\ omega}$’),

shadow = False , loc = (0.75, 0.1))

ax.set_xlabel(r’$\ gamma_1 + \gamma_2$’, {’fontsize ’ : 20 })

ax.set_ylabel(r’$A^{n\omega}$ (dB)’, {’fontsize ’ : 20 })

\end{sympysilent}

The resulting figure is shown below:

\begin{center}

\sympyplot[width =0.5\ linewidth]{fig}

\end{center}

The resulting figure is shown below:

0 2 4 6 8 10

γ1 + γ2

−1.0

−0.5

0.0

0.5

1.0

A
n
ω

(d
B

)

Aω

A2ω

A3ω

As with the sympy.plotting method, the plot is included into your document using
the \sympyplot command. In this case \sympyplot[width=\linewidth]{fig}.

2.2.1 A more sophisticated plot

The following code is one of the demo files for streamline plotting from the matplotlib
documentation. It can be entered directly into the LaTeX source as follows:

13

\begin{sympysilent}

import numpy as np

import matplotlib.pyplot as plt

Y, X = np.mgrid [-3:3:100j, -3:3:100j]

U = -1 - X**2 + Y

V = 1 + X - Y**2

speed = np.sqrt(U*U + V*V)

fig = plt.figure ()

plt.streamplot(X, Y, U, V, color=U, linewidth=2, cmap=plt.cm.autumn)

plt.colorbar ()

\end{sympysilent}

The result is shown below.

\begin{center}

\sympyplot[width =0.5\ linewidth]{fig}

\end{center}

The result is shown below.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−12

−10

−8

−6

−4

−2

0

2

2.2.2 3D plotting

The following example shows a 3D parametric plot using matplotlib and SympyTeX.

14

\begin{sympysilent}

import matplotlib as mpl

from mpl_toolkits.mplot3d import Axes3D

import numpy as np

import matplotlib.pyplot as plt

mpl.rcParams[’legend.fontsize ’] = 10

fig = plt.figure ()

ax = fig.gca(projection =’3d’)

theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)

z = np.linspace(-2, 2, 100)

r = z**2 + 1

x = r * np.sin(theta)

y = r * np.cos(theta)

ax.plot(x, y, z, label=’parametric curve ’)

ax.legend ()

\end{sympysilent}

\begin{figure}

\centering

\sympyplot[width =\ linewidth]{fig}

\caption{A 3D parametric plot using matplotlib and asymptote .}

\end{figure}

−4
−2

0
2

4 −4
−3
−2
−1

0
1

2
3

4
5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

parametric curve

Figure 2.2. A 3D parametric plot using matplotlib and
asymptote.

15

2.3 Plotting with PGF/TikZ

To plot figures with SympyTeX, the LaTeX package pgfplots [1] can be used. Pgfplots
is using the PGF/TikZ package as a graphics backend.

The main advantages are the fast output, as we do not need to create any external
files, and the good integration of pgfplots into LaTeX. A short example is given below.

2.3.1 Document Preamble

In order to use PGF/TikZ for plotting, the document preamble must contain the
following:

\usepackage{sympytex}

\usepackage{pgfplots}

After calculating the data points using sympy (or any other package) we insert
them into the string pgfplot.

16

\begin{sympysilent}

import numpy as np

time = np.linspace (0,6,200)

values = np.sin (3* time)

coordinates = ""

for point in zip(time , values):

coordinates = coordinates + str(point)

pgfplot = r"""

\begin{tikzpicture}

\begin{axis}[xlabel=Time ,ylabel=Amplitude]

\addplot[color=red ,mark=x] coordinates { %s };

\end{axis}

\end{tikzpicture}

""" % (coordinates)

\end{sympysilent}

The result is shown below:\ newline

\begin{figure}

\sympyplain{pgfplot}

\end{figure}

The result is shown below:

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

Time

A
m

p
li
tu

d
e

17

18

References

[1] Christian Feuersänger. Manual for package pgfplots. URL http://www. ctan.
org/tex-archive/help/Catalogue/entries/pgfplots. html. Probablement installé dans
votre système sous le nom pgfplots. pdf, 17, 2011.

[2] John D Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):0090–95, 2007.

[3] Sergey Vladimirovich Lyapunov. Development of the theory of lift in the works of
ne zhukovsky. International Journal of Fluid Mechanics Research, 26(4):465–470,
1999.

[4] Timothy C.A. Molteno. SympyTeX: Embedding symbolic computation into LaTeX
documents. Technical Report 2014-3, University of Otago.

19

20

Appendix A

SympyTeX Reference

Each SympyTeX command is described in a section below.

A.1 \sympy command

A.1.1 Automatically breaking lines in long equations

To break equations automatically over long lines you can use the quote environment.
This is very useful when you don’t know the length of the LaTeX expression that will
be produced by sympy. For example.

\begin{sympysilent}

x = sympy.Symbol(’x’)

e = 1/sympy.cos(x)

\end{sympysilent}

\begin{quote }\ raggedright

$ \sympy{e} \approx

\sympy{e.series(x, 0, 15)} $

\end{quote}

1
cos (x)

≈ 1 + x2/2 + 5x4/24 +

61x6/720 + 277x8/8064 +
50521x10/3628800 +
540553x12/95800320 +
199360981x14/87178291200 +
O (x15)

A.2 \sympyplain command

The sympyplain command places the sympy output as text (rather than LaTeX format-
ted). This is really useful if the output is huge as formulae don’t line wrap.

The integral of $1+x^4$ is

$\ sympyplain{sympy.integrate (1+x

**4,x)}$.
The integral of 1 + x4 is x ∗ ∗5/5 + x.

21

\begin{sympysilent}

x = sympy.Symbol(’x’)

e = 1/sympy.cos(x)

\end{sympysilent}

The series expansion of $\ sympy{e

}$

is $\ sympyplain{e.series(x, 0,

10)}$.

The series expansion of 1
cos (x)

is 1 + x ∗
∗2/2 + 5 ∗ x ∗ ∗4/24 + 61 ∗ x ∗ ∗6/720 +
277 ∗ x ∗ ∗8/8064 +O(x ∗ ∗10).

A.3 \sympyplot command

The \sympyplot command inserts graphics into a document. It is very similar to the \

includegraphics command. Syntax is. \sympyplot[<includegraphics opts>][fmt]{figure}

where:

• fmt can be one of pdf,eps,png,jpg or many more. If it is omitted, then an appro-
priate choice will be made for you.

• <figure> is a sympy.plotting object, or a matplotlib figure object

A.4 sympyblock environtment

Placing a sympyblock block in your code, allows you to execute sympy code within
your document. The sympy instructions are included in your document.

\begin{sympyblock}

theta = sympy.Symbol(’theta ’)

from sympy import *

def RotZ(angle):

return Matrix ([\

[cos(angle), -sin(angle), 0],\

[sin(angle), cos(angle) ,0],\

[0,0,1]])

\end{sympyblock}

Some examples of rotation

matrices are

\[R(0) = \sympy{RotZ (0)}. \]

\[R(\pi/2) = \sympy{RotZ(sympy.

pi/2)}. \]

\[R(\ theta) = \sympy{RotZ(theta)

}. \]

theta = sympy.Symbol(’theta’)

from sympy import *

def RotZ(angle):

return Matrix([\

[cos(angle), -sin(angle), 0],\

[sin(angle), cos(angle),0],\

[0,0,1]])

Some examples of rotation matrices are

R(0) =
[
1 0 0
0 1 0
0 0 1

]
.

R(π/2) =
[
0 −1 0
1 0 0
0 0 1

]
.

R(θ) =

[
cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

]
.

22

A.5 sympysilent environment

Placing a sympysilent block in your code, allows you to execute sympy code within
your document. The instructions are not included printed document output. This is
very useful for setting up the sympy environment.

\begin{sympysilent}

theta = sympy.Symbol(’theta ’)

from sympy import *

def RotZ(angle):

return Matrix ([\

[cos(angle), -sin(angle), 0],\

[sin(angle), cos(angle) ,0],\

[0,0,1]])

\end{sympysilent}

Some examples of rotation

matrices are

\[R(0) = \sympy{RotZ (0)}. \]

\[R(\pi/2) = \sympy{RotZ(sympy.

pi/2)}. \]

\[R(\theta) = \sympy{RotZ(theta)

}. \]

Some examples of rotation matrices are

R(0) =
[
1 0 0
0 1 0
0 0 1

]
.

R(π/2) =
[
0 −1 0
1 0 0
0 0 1

]
.

R(θ) =

[
cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

]
.

23

24

Appendix B

Installing SympyTeX

You must have LaTeX and the sympy Python package installed on your system. For
Debian based systems1 the following commands should suffice.

sudo aptitude install python -sympy

B.0.1 Important! Setting up Your LaTeX environment

To use SympyTeX, you have to run latex (or pdflatex) on your file, then python, and
then latex again.

latex example.tex

python example.sympy

latex example.tex

If you are using pdflatex, then you would use the following commands

pdflatex example.tex

python example.sympy

pdflatex example.tex

If you use Kile, or another LaTeX environment, you can set it up to automatically do
the sympy python command as part of your build process.

1This includes Debian, Ubuntu and other linux systems.

25

26

Appendix C

Making SympyTeX easy to use

Perhaps the simplest way to automate the use of SympyTeX is to use a Makefile. This
file describes a series of actions that are triggered when files change. This approach is
described in Section C.1.

Another approach is to set up a LaTeX development environment. Section C.2
shows how to do this for Kile – part of the KDE desktop environment. There are many
other environments, some popular ones include Texmaker, TeXnicCenter, AUCTeX
and TeXShop. Most of these can be configured in a similar way to Kile. The general
principle is to run SympyTeX after running LaTeX on the document.

C.1 Using a Makefile

A makefile is a quick way to automate the process of building your document. The
following file is an example:

#

Sample Makefile for generating a pdflatex

document that includes symbolic computations

that use sympy.

#

Requires the following tools

#

aptitude install make python -sympy

#

Default target. Just type ’make ’ to build the document.

all: clean

pdflatex ETR_sympytex.tex

python ETR_sympytex.sympy

pdflatex ETR_sympytex.tex

Remove temporary files. These can cause sympy to fail

if you have changed the .tex document and the wrong

sympy output is inserted.

clean:

rm -f *.pyc

rm -f *.sout

rm -f *.sympy

27

C.2 Configuring Kile to use SympyTeX

The KDE LaTeX tool can be configured to automatically call SympyTeX when a
document is built. To do this, we will add a new tool to Kile called ’SympyTeX’.

Go to the Settings menu and choose the “Configure Kile” option. Select the Tool-
s/Build panel as shown:

Now click the new button and name the tool SympyTeX and click ‘next’

Choose the ‘custom’ class, and click ‘finish’

28

Now select the SympyTeX tool, and edit the command and options as shown below:

At this point, you can now choose the SympyTeX option from the Build → Other
menu.

C.2.1 Important! Cleaning up

A command must be included in the quickbuild that removes the sympytex temporary
output files. Create a command called SympyClean that removes the .sout file. This
is shown below.

29

At this point, you can now choose the SympyTeX option from the Build → Other
menu.

C.2.2 Setting up QuickBuild

To automate the process, and have SympyTeX called every time your document is
built1, edit the quickbuild option as shown below

1This will slow things down a bit so take care when doing this on large documents with complex
calculations

30

31

32

ETreport.cls v0.1

Electronics Group
Department of Physics

University of Otago
elec.otago.ac.nz

	SympyTeX by example
	A first example
	The Zhukovsky airfoil

	Plotting and Graphics
	Plotting with the sympy.plotting module
	Plotting with Matplotlib
	A more sophisticated plot
	3D plotting

	Plotting with PGF/TikZ
	Document Preamble

	SympyTeX Reference
	\sympy command
	Automatically breaking lines in long equations

	\sympyplain command
	\sympyplot command
	sympyblock environtment
	sympysilent environment

	Installing SympyTeX
	Important! Setting up Your LaTeX environment

	Making SympyTeX easy to use
	Using a Makefile
	Configuring Kile to use SympyTeX
	Important! Cleaning up
	Setting up QuickBuild

