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ABSTRACT

We present a numerical model based on the finite wlon@thod to simulate sea ice
growth and desalination as a flow process through a porodismevith phase change.
To achieve this we estimate a permeability-porosity iatiip for the initial stages of
sea ice growth from experimental data for brine draindje.model generates ice
sheets with salinity profiles close to calculationsdezhon ice growth velocity.

INTRODUCTION

It is often desirable to know the permeability of seadacenderstand microscopic
processes inside ice sheets that affect the salt bddgey sea ice formation (Worster,
1992; Feltham et al, 2002), or the meltwater budget during sehsintegration
(Eicken et al., 2002). Direct measurements of the pertitgads a function of surface
temperature (Ono and Kasai, 1985), porosity (Freitag, 1999; Eatkan 2002) or
microstructure (Freitag, 1999) are difficult to obtain anel thus scarce. They show a
considerable amount of scatter that is attributed, i) fasample size effects (Freitag,
1999). They reveal the sensitivity of flow resistancthtocrystal structure and history
of a sea ice sheet. For large scale modelling purposas iecdesirable to find a simple
parameterisation of the permeability of sea ice thabants implicitly for small scale
fluctuations (Eicken et al, 2002). We present an attemiptda permeability function
that is suitable for modelling sea ice growth. Numesdalulations are performed that
illustrate the capability of a simple permeability-patpfunction to generate realistic
sea ice sheet salinity profiles during ice growth.

MODEL DESCRIPTION

We treat sea ice growth as the flow of a Newtoniaid fin a two-dimensional domain
that is partly pure liquid, and partly porous ice. The swigdrix of the porous medium
is stationary in position, but time variable as govelmgthe phase change. The
governing equations reduce to the Navier-Stokes equations widsBesq
approximation in the liquid region, while flow in the pasomedium is dominated by
friction that is expressed through a term after DaBrinkman, 1947). Permeability is
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treated as a function of local porosity. The poroudiom undergoes phase change, and
local thermodynamic equilibrium is assumed. The nisakimplementation is based
on the finite volume method with a staggered rectanguldr(Patankar, 1980).

The governing equations of the finite volume method alenve-averaged formulations
of the Navier-Stokes equations for a pure liquid. We chuséntegration volume to be
large enough so that small changes in position causesonallf changes in average
properties. We use a governing set of equations that isitvallgphysical properties of
the pure liquid and of the pure solid are constant in tindeirdependent of position. In
the momentum equations we apply the Boussinesq approximeagiothe density of the
liquid is constant except in the buoyancy term, wheetieated as a function of local
temperature and salinity.

The volume averaged momentum and mass conservation egu@atia no-slip
boundary condition between microscopic solid and liguel
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whereu andyv are the fluid velocity components in thandy directions, respectively,
g1 andgs are the constant densities of liquid and seilit, the variable density of the
liquid, q is the dynamic viscosity the pressureg and[1 split intox- andy-components
of the acceleration due to gravity and the permealaifithe solid, respectively, arids
the volume fraction of the liquid phase.

We find from experience that the solution of the maskraomentum equation (see
below) on a staggered grid is stable if we solvdd@andfv. We therefore transform the
advection term on the left hand side of (1) and (2).ddrévative of the phase fraction
that emerges is dropped as it appears only in the porousmmadd fluid flow in the
porous medium is dominated by the Darcy friction term. rEiselting momentum
eguations are
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From volume integration of the transport equation wiaiolihe conservation equations
for heat and mass of solute. They are for heat
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In (6) and (7)T is the temperature of solid and liquijs the solute concentration in
the liquid,L is the latent heat of fusion, afids the solute diffusion coefficient in the
liquid. Solute diffusion through the solid is neglectéde average quantities for the
porous medium
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are defined from the specific heat capacitieendcs, and heat conductivitidg andks

of the liquid and solid, respectively. In the detien of (6) we assume that the average
temperatures of solid and liquid are equal andséimee as the temperature at the
microscopic solid-liquid interface. Further, latéw@at is released or absorbed at the
microscopic interface during phase transition.hie derivation of (7) we assume that
the concentration of solute at the microscopiastidjuid interface is equal to the
average concentration of solute in the liquid, #rad the concentration in the solid is
zero. Solute is rejected into the liquid phasénatniicroscopic interface during the
phase transition. We prescribe local thermodynasgidlibrium to determine the
volume fractiorf. The volume fraction is adjusted until the equilin condition,

T(f)=T(C(f)). (10)

hold, whereT((C) is the freezing temperature as a function of sodaincentration. We
use a step-wise linear freezing point equatiorséar ice, fitted to data given by Cox and
Weeks (1982). Since on the scale of the finite m&lsimulation sea ice has a distinct
transition form the purely liquid phase to the peronedium we incorporate a form of
freezing front tracking. We restrict ice formatimnthose computational cells that either
already contain ice or have a liquid volume fractiess than the specified threshold

fr = 0.8 (Langhorne and Robinson, 1986) at a minimé@ione of their faces. The liquid
volume fraction at the cell face is estimated hedir extrapolation from neighbouring
cells.

Equations (3) to (10) form a coupled set of diffeéi@ equations that are solved
iteratively for each time step with the SIMPLECa&ithm (Versteeg and Malalasekera,
1995). Discretisation of transient and advectiomtes limited to first order schemes in



this work, as second order schemes could not gigsatability under all phase
transition conditions studied. Since fluid veloegtiare quite small, first-order schemes
give reasonably accurate results. We allow fluftbum and outflow at the bottom of the
domain. At this open boundary we chose the predsauadary condition to enforce
mass conservation, impose zero velocity gradiennabto the boundary, and zero
velocity parallel to it (Sani and Gresho, 1994)mperature and solute concentration at
the open boundary take on prescribed valugsandCog for inward flow. The integrity
of the algorithm is validated by correctly determ@the critical Rayleigh number for
Rayleigh-Bernard convection, and by calculatingftibn pattern over a backward
facing step in the laminar region of Reynolds nunfe=800, where the open
boundary is placed such as to intersect the seetay (Sani and Gresho, 1994).

PERMEABILITY FUNCTION

We seek a parameterisation of the permeabilityfasction of the liquid volume
fractionf in order to solve the momentum equation. Sincegtherning equations are
based on the assumption of an interconnected ligjugde, any isolated pockets have to
be accounted for implicitly by the permeability @ion. Owing to the presence of
drainage systems on all length scales, and thegehainpore structure with age and
history of the sea ice sheet (Freitag, 1999) waakexpect to find a permeability
function of only one parameter that predicts therability in all circumstances. Here,
we are particularly concerned with permeabilityaung sea ice under growth
conditions, and find a permeability function foatlsituation.

Our primary concern in this paper is the modellrigea ice desalination. Cox and
Weeks (1975) have performed a laboratory studyerirtitial sea ice desalination
process. They find that, after an initial brinereggtion process, the salinity of the ice
sheet continuously decreases mainly as a resgtawity drainage. They present data
for f<0.7 that we fit with a power law function and dbta
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where the rate of sea ice desalinatid8,, / At, is proportional to the vertical

temperature gradienfT /Az. The rate of desalination is zero faz 0.054. Details of
the fit are given in Petrich (2004). Assuming thamge in salinity of sea ice is
proportional to the solute concentration of seaiiee AS_, = 5 AC,,, and assuming

that the temperature gradient is proportional eodbncentration gradient of liquid brine,
i.e. AT/Az=a AC, / Az, whereq is the slope of the liquidus line, we rewrite (11)
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Comparing this expression to the transient andaabreterms of the solute mass
balance equation (7) we obtain an expression @wértical liquid mass flux during
freezing,(f u), as a function of instantaneous liquid volume ticacf,

(fu) = —42x10" psums* K * %(f ~0.054)"2. (13)



We describe fluid flow during brine drainage by Byas law,
n, =£ (fu (14)
Op

with an isotropic permeabilithi. that is characteristic for the brine drainage pssc
Assuming thatdp is approximately independent of the conditiongm@wth we obtain
an isotropic permeability function for sea ice dgrinitial desalination of the form

N, O(f -0.054)". (15)

We fit the constant of proportionality in (15) $@t the computer model yields realistic
salinity profiles. In order to define what is retdilt, reference salinity profiles are
calculated from an expression for the stable thigtion coefficientss as a function of
freezing front velocity, where
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is a power law fit to the stable salinity data @lddwo and Sinha (1981) from Arctic sea
ice. The reference velocity of 1.3510" ms® is the average freezing front velocity of
that data. The justification for fitting a powewariginates from the sea ice
desalination model of Cox and Weeks (1988). Theidehsuggests (Petrich, 2004) a
power law relationship with exponent 0.42 for thage of ice growth velocities

3x10° ms' <v<3x10°ms".

In an anisotropic medium the characteristic perntigaldl. in (15) can be understood as
the path average of three orthogonal componentshtwizontal components; » and
one vertical componemly. In one instance Freitag (1999) finds a differeocalmost

one order of magnitude between the horizontal caraptsix; and [Tx2in columnar sea
ice. However, we will continue to examine the suiliey of an isotropic permeability to
model sea ice growth.

EXAMPLE CALCULATIONS
We use the permeability function

M, =1x10™ m? (f - 0.054)" (17)
for f > 0.054, and1, =1x10™" m? for f < 0.054.

Sea ice growth is simulated in domains of varicapeat ratios, 320 to 1280 mm wide
and 640 to 1920 mm high on square grids of cedl 8 x 20 mrf 40 x 40 mrfi, and

80 x 80 mrh. Periodic boundaries (Versteeg and Malalasek&@6)lare imposed in

the horizontalX-direction), an open boundary at the bottom anddpes isothermaly
direction). The salinity of the water is 36 psug &ine water temperature is initially

1 mK above its equilibrium freezing point. Watevadted through the open boundary
is at the same temperature and salinity as therwatbe domain at the beginning of the
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Figure 1 Example of calculated salinity profiles soirface temperatures —10°C
(crosses) and —20°C (dots). Dotted lines are pso@iblculated from (16).

(a) Superposition of 3 profiles at —10°C and 5 if@sfat —20°C. The salinity close to
the interface is not shown for clarity. (b) Singbeamples of ice sheet profiles

including the ice-water interface obtained fromoangin 1280 x 1280 mimngrid side
16 x 16. Note the different scales on the y-axes.

simulation. Simulations are stopped when the fregfiont reaches 240 mm above the
open boundary. The details of the ice sheet grewtiilation depend on the domain
configuration. With horizontally periodic boundasgnditions horizontal layers of fluid
motion develop superimposed on the vertical briméndge pattern, particularly in
domains with few (e.g. 8) horizontal cells. Widenthins provide more opportunity for
the brine to disturb this flow. These layers atefacts of the two-dimensional domain.
They are faster moving on fine grids than on cogr&ks, probably because coarse grids
increase localised mixing and dissipation of momentWe find that high horizontal
flow velocities reduce brine drainage in the sysamestigated. To keep salinity
profiles comparable, we limit horizontal flow veites to 3 mmg by introducing an
additional friction source term in the momentumageun. The choice of this limit
originates in the observation that horizontal vities of 3 mm3 are seldom exceeded
in simulations with 80 mm grid size. Feltham e(24102) have developed an analytical
model of ice growth in the presence of a shear #iond demonstrate that brine
expulsion depends on shear stress in the fluidhi§abrofiles do not depend on the
overall height of the domain. However, as expedigsl smoothness of the horizontally
averaged salinity profiles generally increases witneasing number of horizontal cells.

Figure 1(a) illustrates the range of scatter oleim calculations with various domain
configurations mentioned above. Apart from thetstdhe salinity profiles for ice
grown from a constant temperature surface matchrivies predicted from (16) based
on the interface velocity. The salinity closesthe ice-water interface is not shown for
clarity. Figure 1(b) compares the salinity probiiean ice sheet grown at a surface
temperature of —10°C with one grown in an otherwdsatical domain configuration at
—20°C. Both profiles show the classical C-shapeilé@\the profile of the simulated ice
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Figure 2 Example calculation of ice growth at —-20stirface temperature after

4 x 10 s. Grid size 16 x 16. The freezing front is in targe 0.96 to 1.04 m below
the surface. The salinity of one of the white voasn200 mm below the surface of
the ice sheet is as high as 54 psu.

sheet at —10°C coincides with the predicted prdfden (16), the simulated profile at
—20°C is systematically higher than predicted by 2 psu. The latter profile shows
deviations from a smooth curve at 0.35 and 0.5 millAstration of the nature of these
deviations is given in Figure 2. It is apparent the horizontal salinity distribution is
very heterogeneous, and as such is qualitativelilasito naturally grown sea ice.
Deviations in the calculated average salinity peatan usually be attributed to channel-
like features, which have a salinity distinctly &bdhe median of the ice sheet at that
height.

SUMMARY

We have demonstrated that it is possible to masteice growth and desalination as
flow through a porous medium with phase change.dymamics of the entire system is
described by a single set of governing equatiores héve estimated a permeability-
porosity relationship from the observed correlatietween rate of brine drainage,
temperature gradient and liquid volume fractio@alculations with this permeability
function resemble extrapolated data from the Arstigrisingly well, although zero
order approximations are made in the derivatiod,tae derivation does not account
explicitly for an initial solute segregation (ComcaWeeks, 1988). The inhomogeneity
of natural sea ice is resembled, including feataueh as brine channels. The form of
the permeability function (17) corresponds to thever law expression predicted by
percolation theory (Golden et al, 1998), where exgmbs of 1.2 to 1.3 are found for
percolation in two-dimensional systems (Berkowid 8alberg, 1992). Unfortunately,
the present model calculations are unable to distei whether or not it is mere chance
that the exponent of equation (17) coincides witt for percolation in a two-
dimensional system. The success of the model esoafssimple, quasi one-
dimensional sea ice growth allows its applicabildybe tested in more complex
situations.
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